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ABSTRACT

This dissertation addresses the need for a formal method to support the merging of

changes in independently developed versior 'a prototype in o. computer-aided rapid pro-

totyping system. The goal is to provide the, .. otype developer with the ability to: combine

independently developed enhancements to a prototype, check for consistency, and automat-

ically update all derived versions of a prototype with changes made to the base version.

A useful semantics-based method is provided for change-merging that is guaranteed to

detect all conflicts. Prototype slicing is used to capture the affected parts of each variation

and the preserved part of the base in both variations. VW . 't_ -ombine the affected parts

with the preserved part using our model, which includes the fire use of Brouwerian Algebras

to formalize the merging of hard real time constraints. Our Slicing Theorem guarantees that

this method produces a prototype that correctly exhibits the significant behavior of each of

the input versions, provided the changes do not conflict. The method achieves correctness

by comparing the slice of the change-merged version with respect to each affected part

agaiinst the same slice of the appropriate changed version. If the slices are the same, the

change-merge is correct, otherwise a diagnostic message results. A preliminary conditional

method for change-merging while programs is also provided that is strictly more accurate

than previous methods.

This dissertation contributes to computer-aided software maintenance by providing a

model, algorithm and implementation for an automated change-merging tool for PSDL pro- or

totypes. Preliminary testing shows that this tool will enhance the ability of the prototype CO
0

developer to deliver a prototype in less time by enabling more concurrency in the develop- 0

mint effort.
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I. INTRODUCTION

During iterative development of software prototypes, different variations are generally

developed where each of the versions contains a portion of the desired capability. Because

these prototypes can be very large, tools that automatically determine the differences be-

tween these versions and produce a new version exhibiting significant behavior from each

are desirable. This dissertation defines a change-merging method that is semantics-based

and guarantees that if a conflict-free result is produced, it is semantically correct, and pro-

vides a working change-merging tool to be integrated into the Computer-Aided Prototyping

System (CAPS). Traditional syntax-based merging tools fall short of providing results guar-

anteed to be semantically correct, and earlier semantics-based change-merging or integration

methods concentrated on combining changes to simple imperative or while programs. We

explore a domain of enhanced date flow programs, written in PSDL, which are inherently

non-deterministic and parallel. Our change-merging method provides the first real change-

merging capability for this domain of programs.

Software change-merging is also applicable to software maintenance activities. As-

miming that a software system has been developed using the computer-aided prototyping

paradigm, or can be translated into the prototyping language, different versions of that soft-

ware can be automatically updated with changes made to the base version by applying our

method. The fielded version would be one variation and the updated base version would

be the other variation. If all of the changes made to the base version are compatible with

the fielded version, applying our method results in a new fielded version updated with the

changes made to the base version. If the changes are not compatible, this information is pro-

vided automatically by our method. Using this technology eliminates the need for software

designers to manually check if changes are compatible before performing updates. It also



aums fewer designs to make changes to existing software system, as well AS prototypes

in development. In an industry with projected costs in the billions of dollars [Ref. 40], (his

translates into significant savings to both the software developer and the customer.

Other uses of this technology are found in the areas of software reuse and reengineering.

In software reuse, complex reusable components can be retrieved from the software repository

that contain more fuictionality than is required for the application. The desired functionality

can be isolated using prototype slicing by taking the slice of the complex component with

respect to the output streams desired. The resultant slice will contain any part of the complex

component that affects the output stream. In reengineering, if a program written in some

high-level language can be translated into the prototyping language, PSDL, then changes

made to the prototype version of the base program can be automatically incorporated into

the prototype versions of the target programs, and the resultant prototype can then be used

to generate new production code for the reengineered program.

A. RAPID PROTOTYPING

Rapid prototyping is an approach to software development that was introduced to

overcome the following weaknesses of traditional approaches:

1. Fully developed software systems that do not satisfy the customer's needs, or are
obsolete upon release.

2. No capability for accurately evaluating real-time requirements before the software
system has been built.

To overcome these weaknesses, computer-aided software development methods must be

developed which ensure accurate requirements engineering and emphasize efficient change

incorporation both during development and after fielding of the software system. Computer-

Aided Rapid Prototyping is one such methodology. Rapid prototyping overcomes these

weaknesses by increasing customer interaction during the requirements engineering phase

2



of development, providing executable specifications that can be evaluated for conformance

to real-time requirements, and producing a production software system in a fraction of the

time required using traditional methods. Rapid prototyping allows the user to get a bet-

ter understanding of requirements early in the conceptual design phase of development. It

involves the use of software tools to rapidly create concrete executable models of selected

aspects of a proposed system to allow the user to view the model and make comments early.

The prototype is rapidly reworked and redemonstrated to the user over several iterations

until the designer and the user have a precise view of what the system should do. This pro-

cess produces a validated set of requirements which become the basis for designing the final

product [Ref. 36]. The prototype can also be transformed into part of the final product. In

some prototyping methodologies, prototypes are developed, demonstrated and then thrown

away before the production system is developed. In prototyping methodologies like the one

used in CAPS, the prototype is an executable shell of the final system, containing a subset

of the system's ultimate functionality. After the design of the prototype is approved by the

customer, the missing functionality is added and the system is delivered. In this approach

to rapid prototyping, software systems can be delivered incrementally as parts of the sys-

tem become fully operational. Figure 1.1 shows the life-cycle model for this prototyping

methodology.

In this model, the customer provides a set of initial goals to the designer. The designer

takes those initial goals and formulates a set of requirements from which the first version of

the prototype is designed. This prototype is then demonstrated to the user, with the user

providing feedback to the designer. The designer takes the feedback, adjusts the requirements

to reflect the adjusted goals and makes whatever changes to the prototype necessary to

satisfy the requirements. It is then redemonstrated to the user for more feedback. This

iterative process continues until a validated set of requirements is accepted by the user. The

designer then takes the prototype and implements the remainder of the functionality needed

to produce the operational system. The result is an operational software system that satisfies

3
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Figure 1.1: Rapid Prototyping Life-Cycle Model. [Ref. 20]

the customer's requirements and that is delivered in only a fraction of the time it would take

using traditional software development mothods

Change-merging is an integral part of the rapid prototyping methodology. During the

Desig Prototype System phase of prototype development, multiple variations of a large pro-

totype are likely to be developed. This can happen when different development teams are

working on different aspects of a system, or when different possible solutions to a problem

are explored in different ways. In the first example, it will certainly be necessary for the sepa-

rately developed pieces of the prototype to be combined into a single system before execution

for the customer. In the second example, the customer may desire a system containing some

or all of the aspects contained in each solution. In this case, these different prototypes must

be change-merged to capture the significant parts of each variation. Our change-merging

method will allow these combinations to be done automatically, ensuring that the resultant

prototype is semantically correct, with respect to all of the input variations. If the pieces are

not compatible with regard to the semantics of the prototype, then our method will identify

the parts of the prototype containing the conflicts. This technology encourages the designer

4
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to explore differant solutions to a problem, and to spread the development workload in a

large project without concern for the subsequent integration of these independent efforts.

B. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

Our method has been implemented for use in the CAPS devrwopment system. It is

designed to operate on programs written in the Prototyping System Description Language

(PSDL), associated with CAPS. PSDL is a high level specification and design language which

can be translated into executable code.

PSDL is a generalization and extension of a data flow language, with the addition

of control constraints and timing operations [Ref. 35]. A PSDL prototype consists of two

parts: a specification and an implementation. The specification of a prototype contains

the interface, and the implementation contains either a PSDL graph implementation, or a

programming language implementation. The PSDL graph implementation contains a set of

operators, a set of data streams through which the operators communicate with one another,

and a set of control and timing constraints which specify restrictions on the execution of the

operators or data streams. The programming language implementation is written in any

high-level programming language like Ada or C that is supported by the environment.

All operators in PSDL prototypes are state machines. Since PSDL is, by definition,

non-deterministic, the meaning of an operator in PSDL is a mathematical relation. PSDL

operators with only one state, or an empty set of state variables, and only one possible out-

come are functions. This meaning is defined by the operator's possibility function discussed

in a later section.

A data stream in a PSDL prototype is a communications link between operators. Each

data stream is either a data flow stream or a sampled stream. Data flow streams are FIFO

buffers of lengths at least one. When a now value is written to the stream, it is appended

to the buffer. Values are removed from a data flow stream only when they are read by the

5



i .uer. Values oa data Row streams can be read only once. Sampled streams are not

traditional data flow streams. They have buffers of size one. When a value is written to the

stream, it remains on the stream until a new value is written to the stream, at which time

the old value is overwritten. A value is not removed from the sampled stream when read.

Data streams can be written by more than one operator, and they can be read by more than

one operator. A complete listing of the PSDL grammar is contained in Appendix D.

C. OVERVIEW

,i the chapters that follow, we provide background information which we used to pro-

d& rorking change-merging tool. Chapter II provides definitions of mathematical con-

structs used in later chapters. Chapter HI provides information about related work, some of

which was accomplished by others before our effort was started, and some we have accom-

plished during the course of the research effort. Chapter IV provides a semantic model for

the PSDL computational model which we used to develop our algorithm, and it contains the

discussions about this dissertation's primary contributions to the state of the art. Chapter

V contains the algorithms used to implement our tool, along with a discussion of their cor-

rectness and complexity. Chapter VI outlines the development of the change-merging tool

and Chapter VII provides our analysis of what we accomplished in this effort, and some

future research options in this area. There are five appendices: Appendix A contains formal

specifications for the constructs used in our model, Appendix B contains details about the

effect of PSDL control constraints on our model, Appendix C contains proofs considered too

lengthy to be included in the text of the dissertation, and Appendix D contains a listing of

the PSDL grammar, and Appendix E contains the program listings of our implementation.

6



II. ALGEBRAIC FOUNDATION FOR MERGING

A. WHAT IS CHANGE-MERGING

Change-merging is a process that allows different changes to a software product to

be combined using computer-aided tools. The result of this change-merge must contain the

differences between the base version and each input version, and must be correct with respect

to the method used; syntactic or semantic. Syntactic change-merging is performed on the

source code of the the input versions with respect to the differences in the syntax of each

version. Semantic cange-merging is performed on the functions computed by the software

product with respect to the behavior associated with each input version. Semantic change-

merging requires a solid mathematical foundation to provide some guarantee of correctness

and engender confidence in a working change-merging system. As has been pointed out in

much of the previous work on merging, there is a solid foundation for representing program

variations in algebra [Re. 6, 28, 42]. This chapter introduces and explains the mathematical

concepts needed to understand the work presented in later chapters. Section B describes

the sets and partially ordered sets, and their relation to change-merging. Section C extends

the discussion to Lattices and describes how lattices are used in change-merging. Section D

builds up to Boolean and Brouwerian Algebras which are very useful in performing change-

merge operations.

B. SETS AND POSETS

A set is a collection of objects, called elements. Operations on sets include E (member-

ship test), u (union), n (intersection) and - (difference). A partially ordered set, or poset,

is defined as follows [Pef. 16]:

7
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DulmthaI Partially Ordered sets

A noumpty set X is said to be a partially ordered set, or poset, provided that a relation

Sis defined on X, satfng the following:

1. Q is refleriw zzfor allzCX;

2. F is antisemmetric: x C y and y C_ z imply that z = y;

3. C is transitivw z C y and y C z imply that z C_ z.

Such a relation C_ is called a partial ordering of the set X.

Our method of change-merging is performed on variations of a PSDL program. Changes

to PSDL programs are not always extensions of a previously defined program. Different

variations can change a previous program in different ways. Since these different variations

are not always compatible extensions of earlier versions, the set of all program variations

does not form a completely ordered set. But since some program variations are compatible

extensions of other programs, the set of all program variations forms a partially ordered set,

with respect to an approximation relation, C.

Definition 2 Approximation Relation for PSDL Prototypes

If z and V are two PSDL prototypes, z approimates y, written z CZ y, if y exhibits any
behavior that z exhibits.

Proposition 1 The set of all possible PSDL prototypes is a poset.

Proof:

If z and I are PSDL prototypes, let C be the approximation relation defined in Defini-

tion 2.

By Definition 1, for the set of all possible PSDL prototypes to be a poset, it must satisfy

the three conditions, reflexivity, antispmmetry, and transitivity.
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(a) Clearly z C z, as x certainly exhibits its own behavior.

(b) Let z C v and y C z. Then y exhibits any behavior that z exhibits, and z exhibits

any behavior that Y exhibits. Thus z =Y.

(c) Let z Q y and y Q z. Then p exhibits any behavior that x exhibits and possibly

more, and z exhibits any behavior that I exhibits, so z exhibits any behavior that z exhibits.

Thus z C z.

Therefore by (a), (b) and (c), the set of all possible PSDL prototypes is a poset. 0

C. LATTICES

A lattice ordered poset is a partially ordered set (L, Q) such that for every pair of

elements, x, y e L, the supremum, aup(z, y), and the infimum, inf(z, y), exist [Ref. 34]. An

example of a lattice is shown in Figure 2.1.

An alkebmic lattice is a nonempty set L together with two binary operations, meet (n)

and join (U), which satisfy the following conditions for all x, y, z E L [Ref. 34]:

(1) Commutativity: z n y = nl z and z U y = y xz.

(2) Associativity: zn(y nfz)=(xnfy)nlzandzU(yUz)=(xUy)Uz.

(3) Absorption: zn(zUy) =z and U(zfly) = z.

(4) Idempotence: zrlz= and zUz=z.

In the context of merging pure program extensions, the meet (nl) operation represents

the greatest common approximation of two programs, and the join (U) operations repre-

sents the least common extension. The greatest common approximation of two programs

represents the functionality common to both programs, and the least common extension

represents the union of both of their functionalities.
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Figure 2.1: An Example of a Lattice.

According to [Ref. 34], every lattice ordered set is an algebraic lattice if we define

zx y =inf(z,y) and z U y = sup(zy).

A distributive lattice is an algebraic lattice for which at least one of the following

properties holds:

1. z fi(y Uz) =(xnfy) U(z fz).
2. zu(yfz)=(xuy)f(zuz).

An algebraic lattice Z is complemented if for every z E C there is at least one element

y E such that z U•y = T and z n y = i. We say that y is the i complement of z.

D. BOOLEAN AND BROUWERIAN ALGEBRAS

A Boolean Algebra is a complemented, distributive lattice [Ref. 34]. Change-merging

over Boolean algebras is done very simply using set operations. A very rich and well under-

stood set of laws is available for the use of Boolean Algebras.

A Brouwerian Algebra is a distributive lattice with a pseudo-difference operation, -,

characterized by the property x - y _; z *==: z C y U z. This property states that the

pseudo-difference of two sets z and y is contained in the set z if and only if x is contained

in the supremum of y and z. A formal definition of Brouwerian algebras follows [Ref. 39]:

10



Definition 3 Brouwerian Algebras
.1

A Brouwerian algebra is an algebra (L, U, n, ', T) that satisfies the following properties:

(i) (L, U, (n) is a lattice with a greatest element, T.

(U) L is dosed under .

(iii) For all elements z, y, z E L, the formulas z - y C z and x C y U z are equivalent.

[Ref. 391 also provides the following properties of Brouwerian algebras:

Theorem 1 Let L be a Brouwerian algebra under U, n and -. Then:

(i) L has a zero element, I determined by the formula I - T - T.

(4) L is a distributive lattice.

(iii) If z C_ y, then x -L z 9_ y - z, z--y 9 Cz -z, and T y-9C T -z

(iv) X C_ Y 4==Io X - 9 =

(v) _C yU(: - Y).

(Vi) (z u )z - y C_,.

(Vii) X - z C (zuY) - z.

(Viii) zU(, L Y) = z + [(Z U:) -" (z U Y)J.

(ix) z- (xy)= (z x-)u (z - y).

() ( u Y) -= (- Z) U (y -Z).

(zi) "r - (Tr -L z) C-z.

(xii) T - (T - (T - x)) = T z .

(xiii) T -. L T and T - T =I.

(ziv) z U (T -z)= T.

The proof of this theorem is contained in [Ref. 391.

Brouwerian algebras are very useful in the study of sets in which the true difference

between two elements is not guaranteed to exist.
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Z. SUMMARY

It turns out that every component of PSDL programs that can be change-merged can

be modeled using lattices or algebras. Many of the different parts of PSDL prototypes which

are merged separately do not fit nicely into Boolean algebras, with the exception of some

control constraints, so we introduced the concept of Brouwerian algebras. Throughout this

dissertation, the concepts discussed in this chapter are used to prove different parts of the

change-merging model contained in Chapters III and IV, and considered in the development

of the algorithm and implementation.
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III. RELATED WORK

This chapter reviews and assesses some of the work related to the change-merging

problem which has already been accomplished. Since change-merging is a relatively new

problem, there have been a number of research efforts aimed at defining the theoretical

foundations for the problem, but not much effort has been placed on implementing a solution

for real programs. Our research effort is the first to tackle a real-world problem and succeed

in providing a working solution. This effort would have been nearly impossible, however,

had it not been for the pioneering work reviewed in this chapter.

A. TEXT BASED MERGING

The earliest work on program merging relied on combining changes made to the text

files containing the source code for the program [Ref. 43, 45]. These early systems certainly

provided an advance to the then-current state of the art, but syntax-based merging did not

prove useful in the general case, as syntax-based merging proved insufficient to provide any

guarantee of semantic correctness [Ref. 4.

The first of the text-based merging systems was introduced as part of a software man-

agement toolkit called the Revision Control System or (RCS) [Ref. 45]. This system was

developed as a way to maintain the update history of a file. The system saves the initial

version of the file when invoked for the first time and, in subsequent invocations, saves only

the changes made to the previous version. Merging is accomplished through the use of the

command RCSMERGE. RCSMERGE tries to combine the differences between two differ-

ent changes to the same base document based on the assumption that changes to disjoint

portions of the text are independent. Where it is able to combine the changes, it makes
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the dump to the output file. When it is not able to combine the differences, it prints the

respective piece of each version as a conflict in the output file, so the author can resolve it

manually.

These systems work well for most text files with small individual changes. For programs,

however, they do not provide even a guarantee of syntactic correctness, and in some cases

when the changes are significant, the tool is unable to match even the parts that did not

change.

B. MERGING OF PROGRAM EXTENSIONS

In [Ref. 6], Berzins presents the first definitive work on semantic-based program merging.

This work is limited to considering program extensions, and does not consider changes that

remove functionality from the base program. It recognizes that program extensions can be

ordered using an approximation relation C. If p is a base program, and q is an extension of

p. then p g q. That is to say that the functionality of q agrees with the functionality of p

everywhere p is defined, but q may be defined where p is not.

With this ordering in mind, two programs p and q can be merged by finding the least

common extension of p and q, written pUq, where p and q are base programs and pUq is the

merged program. He also recognizes that the exact least common extension of two programs

is not computable in the general case, but a safe approximation is sufficient in practice.

Berzins considers four software domains: specifications, functions, programs and data

types. These domains are defined in Figure 3.1. All of these domains are represented using

lattices. The following sections describe the representation of these domains.
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Specifiation: Defines Acceptable Range of Behavior
Function: Models Actual Behavior
Program: Algorithms Defining Partial Functions
Data Type: Set on which Programs Operate

Figure 3.1: Definitions of Relevant Domains

1. Functions, Specifications and Programs

Functions, specification and program domains can all be viewed as lattices with

respect to the approximation ordering E. Each lattice contains the elements of the domain

together with a top element, T, representing an overconstrained element, and a bottom

element, I, representing an undefined element. The least common extension of two elements,

z and y can then be defined in terms of lattice operations as the least upper bound of z and

y, denoted z U y. If z and y are compatible, then z U y 0 T, otherwise z U y = T.

2. Data Types

The lattice for a domain representing a conventional data type, Do, can be defined

as a set V = DoU{.I, TI, where I approximates everything and T is an extension of

everything. The definition of the extension relation for V is:

z I-Y 4 (1 -= -z) V (z---= y) V (y =- T)

The least upper bound of any two unequal elements in this domain is T, the overconstrained

element. This model applies to data types whose elements are either completely defined or

completely undefined. An example of a type that is not covered by this construction is a list

with a component selector implemented using lazy evaluation. Some components of such a

list may be well defined, while other components may be undefined (i.e. cause infinite loops

if they are accessed).
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3. Aaalyuis

The work presented in [Ref. 61 provides a fundamental basis for most of the current

work in semantics-based program integration and merging. It looks at programs in terms of

their semantic building blocks and provides a theory describing how merging occurs at the

building block level. This work shows that computing a useful approximation to an ideal

merge is both achievable and sufficient.

C. INTEGRATION OF CHANGES TO WHILE-PROGRAMS

In [Ref. 28), the first semantics-based algorithm for integrating two non-interfering

modifications of a ban program is described. This integration algorithm produces a third

program which reflects both modifications, and uses program dependence graphs (PDGs) to

abstractly represent the programs. Using program slicing, it then determines which portions

of the two modifications are different from the base program. Based on this information,

the algorithm uses a conservative approximation to determine if the changes can interfere.

If they can not, the program slices are combined into one integrated PDG, which is then

transformed into a final version of the integrated program.

1. Program Dependence Graphs

A PDG for a program P, as described in [RVf. 28], is a directed graph, Gp, with

vertices representing statements in the program, and edges representing control and data

dependencies between the vertices. There are also two special types of vertices in the PDG

which are not program statements; an entru vertex and a final-use vertex for each output

variable. A complete list of the types of vertices is contained in [Ref. 28].

Using these components, a PDG can be constructed for any while-program [Ref. 33].

Figure 3.2 shows an example of a simple program and its associated PDG. By analyzing the
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parts of this graph that affect a certain variable, we are able to observe the effects of a change

to the program with respect to that variable. This is done using program slicing fRef. 4t].

program E
sum 0;x := 1;T

while x < 11 do
sum:= sum + 1;
x := x + 1; sum:=0 x0=I wbilex'<11

odT
"en(xvsum)

giALUSENx ( LS~u

4pp CONTROL

= LOOP INDEPENDENT
SmDEF-ORDER

-. LOOP CONTROLLED

Figure 3.2: Example of a Program Dependence Graph [Rd. 28]

2. Program Slicing

The program slice of a graph G with respect to a vertex a is the subgraph of G

induced by all vertices that can reach a by way of control (-') or flow (----f) dependence

edges, along with the edges that connect the vertices.

V(Ga) ={w E V(G) I w -.--. }

To get the slice of a graph G with respect to one of the output variables, say z,

merely take the slice with respect to the vertex labeled FinaLUse(z). The slice is con-

structed backward from the Jinal-we vertex, and includes all control or flow edges which
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can cout'Ibte to the Anal value of z. Def-order edges are contained in the slice only if the

vertex which observes the dependency is also included in the slice. This construction can

be extended to a set of vertices S = {s1 ,s2,...,s}) by taking the union of the vertex and

edge sets of all of the individual program slices. Figure 3.3 shows an example of the slice

of the previous program taken with respect to the variable z at the final-use node and the

corresponding PDG.

program T
x := 1;
while x < 11 do x:=W wiIeX<1
x:=x+1;

od
end(x)

* CONTROL
- LOOP INDEPENDENT

-e*.- DEF-ORDER
LOOP CONTROLLED

Figure 3.3: Example of a Slice of a Program Dependence Graph [Ref. 28]

3. Integration Algorithm

The integration a!orithm presented in [Rd. 28] starts by creating program depen-

dence graphs for each program and, using program slicing, identifies the part of the base

program which is preserved in all three versions and the parts of the variations which are

different from the base. The common part of all three versions is called the preserved part,
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and the part of each variation that is different from the base is called the affected part of

that variation.

These three slices are then combined into an integrated PDG. If the integrated

PDG is feasible' and the two variants do not interfere with each other, then the integration

is successful. One major problem identified in this work is that determining whether a PDG

is feasible is NP-Complete [Ref. 24. The other criterion for determining success is more

tractable, that of determining imterference. This is done by comparing the slices of each of

the three original versions against slices in the merged version. If the slice of the merged

version with respect to the affected parts of each modification is the same as the slice of that
modification with respect to its affected parts, and the slice of merged version with respect

to the preserved part is the same as the base version with respect to the preserved part, then

the versions do not interfere, and a successful integration is possible.

The work in [Ref. 28] is supported by three theorems; the slicing theorem, the

equivalence theorem and the integration theorem. The slicing theorem states that when

given the same input and starting state, a slice of a program that halts produces precisely

the same output as the program. The equivalence theorem states that if two programs have

equivalent PDGs, then the programs are themselves equivalent. The integration theorem

states that if M is the result of a successful integration, then M halts on any initial state

on which the three input versions halt, and M correctly preserves the meaning of each

modification to the base.

4. Meaning Functions

Meaning functions [Ref. 33] represent the semantic meaning of a program as map-

pings from states to states. These state changes are represented as sets of pairs including an

initial state and the corresponding final state(s). In [Ref. 10], Berzins provides a theoretical

'A progrm dependeace graph is feasible if it is a PDG for a program.[Ref. 24
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imintiU for S wWS simple, imperative programs using their meaning functions. This

theory uses the notion that program variations can be viewed as partial functions modeed

using a powerset lattice. Since a powerset lattice is equivalent to a Boolean algebra, normal

set operations, U, n and - can be used to reason about these program variations.

This theory shows that a change transformations from a base program f to a

variation 9, AV,9], can be applied to a second variation h, A[fg](h) with precisely the

same results as if the change from f to h were applied to g, AVf, h](g). This is very useful

in change-merging, as it demonstrates that independent updates to a common base version

S of a software product and subsequently change-merged without regard for the order in

which they were accomplished. As long as the changes made are compatible, the results in

terms of the meaning functions are the same. It does show, however, that the change-merged

program does not necessarily have to be similar to the input programs.

The meaning functions for the programs shown in Figure 3.4 are as follows:

m(B) = (z > 0 -. {((-,y), (z, 1))} x -5 0 -. ((x, y), (z,-1))))

m(A) = (z > 0 -- {((z,y),(z, 1))} I 0-. {((x, y), (z, 0)))

M(C) = (z > 0 -. {((,), (Z, ))) -z 0-. {((-,y),(-,-1))))

These three versions are merged using their meaning functions as follows [Ref. 10]:

m(M) = m(A[BJC) = m(A)[m(B)]m(C) 2

= (m(A) - m(B)) U (rn(A) nf m(B)) U (m(C) - rn(B))

= (z> 0-- {((zp), (z, 1))) - {((zy,), (z, )) I

0 <_ 0- {((,.Y), (Z,0))M- f(.), (-.-M)

u(z > o- {((x, y), (x, 1))) n {((z, y), (x, x))) I
x <5 o -- y((,), (.T,o))} n f(((z, y), (,1)) ))

U(z > 0 - {((-, y),(,))} - {((Z, Y), (z, 1))) I

S: 0 -. {((Z,,), (Z,-1)))- {((, (Z.--))})

h emnotatim A[B]C will be introduced in Section D.1
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=(X > 0 - z}t < 0 -- 0(z u .(~ )))

U(S > 0-. {((z, Y), (I, 1))) 1w -SO -# {})
U(z > 0 -0 {(((, Y), (Z, X)) I x 1} I= -< o0, }

= (x > 0o-+ f{((Z, V), (--, x))) I z< 0 -0 {((, Y), (Z. ODD}

= M(if > O then y:= else y:= O) = r(M)

Base version B: if z > 0 then y:= I else y:= -1 fi
First chmge veion A: if z > 0 then y:= I else y:= 0 fi
Second change version C: if z > O then y:=iz else y:= -l fi

Figure 3A: A Program and Two Variations [Ref. 10]

5. Analysis

The work presented in this section shows that a method can be developed for

integrating real programs. The work contained in [Ref. 28, 29, 48] illustrates a method for

integrating programs in a simple imperative programming language that has been developed

and work.. This demo rate that a practical method is possible for imperative programs,

but falls short of providing a method which is useful to solve any real world problems. In

particular, the method fails to provide any sort of conflict location or resolution. If a conflict

is detected, then it is reported to the user, and the integration fails. It is up to the user to

determine the nature of the conflict and how it should be resolved. Our methods address

these problems as shown in the next section and in Chapter IV.

D. CHANGE-MERGING OF PSDL PROGRAMS

In [Rd. 20], an initial attempt at developing a model for change-merging PSDL pro-

grams is presented. Although crude, this model provides us with an important part of the
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it d•ei s$.•Sam S modx and insight into the current edort defined in subsequent

1. Change-Merge Operation

This change-merge operation is defined by the operation A[B]C, where A, B and C

are sets of pairs representing the functionality of three different versions of a PSDL program.

The operation A[BIC was initially introduced by Berzins in [Ref. 91 and is defined as:

A[B]C = (A- B) u (An C) u (C- B)

where n, U and - represent the geatest common approximation, least common extension,

and semantic difference respectively, between two programs.

The set of all PSDL programs, together with a T and I, forms a lattice using the

relation approzimate [RW. 201. If A is an extension of B, then we say that B approximates

A, written B C: A. The T element in the lattice is an extension of every PSDL program,

and the I element approximates all PSDL programs. For example consider the lattice in

Figure 3.5. In this example, 0 and P are extensions of A and A approximates both 0 and

P. P and Q are both extensions of B and B approximates both P and Q. P is a common

extension for both A and B. In fact, P is the least common extension of A and B.

T_

Figure 3.5: A Lattice of Program Extensions
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The least common extension of two PSDL programs, AUB, is the smallest possible

PSDL program P such that A _C P and B Q P, and represents the union of the functionalities

found in both A and B. In Figure 3.5, P is the least common extension of A and B. The

greatest common approximation of two PSDL programs, P n Q, is the largest possible PSDL

program B such that B C P and B C Q, and represents the common functionality found in

both P and Q. In Figure 3.5, B is the least common extension of P and Q. The semantic

difference between two programs, A - B, represents the functionality found in A, but not in

B. The semantic difference exists if the lattice is a Boolean algebra, and a pseudo-difference

can be defined if the lattice is a Brouwerian algebra.

It has been shown that the least common extension of two programs is not com-

putable in the general case [Ref. 6]. In [Ref. 20], we demonstrated that an approximation that

is computable is sufficient to provide a useful change-merge for most cases. The following

sections outline the model defined in [Ref. 2q.

2. Interfaces

The interface of a PSDL operator P is the definition of the operator's external

contacts. It defines Ip, the set of inputs expected by the operator, Op, the set of outputs

that can be expected, and in the case of generic templates, GNp, the set of generic param-

eters used to instantiate the prototype. Ip, Op, and GNp are all ordered sets (sequences).

The interface may also contain a set Stp, of internal state variables, a set Ep, of possible

exceptions, and a maximum execution time constraint that is met by the program. Stp and

Ep are sets.

a. Sequences

Sequences are a significant building block for many programming languages,

including PSDL. A sequence is a totally ordered collection. Since the order of the collection
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is signicant, any change made to the sequence is an incompatible change and creates a

sequence whic. is neither an approximation nor an extension of the original sequence! A

correct mathematical repref iit&tion for a sequence would be a flat lattice, like the one in

Figure 3.6. This means that the only approximation for the sequence is the undefined

sequence, I, and the only extension of the sequence is the unconstrained set, T, and the

greatest common approximation of any two sequences is the undefined element, I.

T
[11[31 [1,3]

Figure 3.6: A Flat Lattice Representation for a Sequence

(1) Input and Output. Input and Output interfaces are sequences of input

and output streams. The order of these sequences is significant because actual parameters

are associated with formal parameters based on the order in which they appear. In change-

merging IA, IB, and IBE into IM, any change between the interface sequence of the base

version and the two modified versions is significant, and must be preserved in the change-

merged version. The change-merged sequence of inputs, or outputs, is determined by the

following rules:

1. If both of the modified versions have the same interface sequence as the base,
then: IM = I•B,.

2. If one of the two modified versions, say IA, is the same as the base, and IB is
not, then: IM = I= .

3. If all three versions are different from each other, then: IM = T.
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The first situation is the case in which no changes were made between the

inputs of the Base and the two modifications. In this case, the change-merged version should

have all of the same inputs, or outputs. The second situation is the case in which only one of

the modifications changed from the base. In this case, the change from the base is significant

and must be preserved in the change-merged version. The third situation is the case where

both of the modifications changed from the base. The result is a conflict because there

is no proper PSDL specification that is consistent with both modifications. The result of

a change-merge which produces a conflict for this situation would be an input declaration

which contains a T where the input stream declarations would be.

The type declarations of the streams also have to be merged. Because the

types are significant, any change to the type declaration must be preserved in the merged

version. Types are also change-merged using a flat lattice structure. Figure 3.7 contains an

example of a change-merge on Input Sets.

SBEn = INPUT
z : integer,
y real

OUTPUT
w integer,
z string

SA INPUT SB = INPUT
z : integer z : integer,

OUTPUT y : real
w : integer, OUTPUT
t : integer, w :integer
z :string

SM = INPUT
z : integer

OUTPUT
T

Figure 3.7: Example of a Change-Merge on Input Sets [Ref. 20]
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(2) Geermic Parameters. The Generic interface is contained only in template

operators and PSDL type specifications. Template operators are operators in the Soft'are

Base used to instantiate software components. Change-merging generic parameters is similar

to change-merging input and output parameters with the exception that, in addition to

value parameters, generic parameter sequences may also contain operator parameters and

type parameters. Changes to generic sequences follow the same rules as Input and Output

sequences. Figure 3.8 shows an example of a change-merge operation on generic parameters.

GNB.. = GENERIC
tl : type,
t2 : type,
ol : operation[il,i2: tl,ol : t2],
vI: integer

GNA = GENERIC GNB = GENERIC
tl : type, tl : type,
t3 : type, t2 : type,
o2 : operation[il tl, ol : t3], ol : operation[il, i2: tl, ol : t2],
v1 : integer vl : integer

GNM = GENERIC
t1 : type,
t3 : type,
o2: operation[il : tl, ol : t3],
v1 : integer

Figure 3.8: Example of a Change-Merge on Generic Parameters [Ref. 20]

b. Sets

Sets are modeled using a "Powerset Lattice" as shown in Figure 3.9, and thus

more freedom can be exercised in change-merging them. Change-merge operations do not

follow the same rules for sets as for sequences.
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Ia~~b{ ab,L I}a

{ {J

Figure 3.9: A Powerset Lattice Representation for a Set Containing Three Elements

(1) States. State variables differ from input and output variables in that,

abstractly, they are tuples, containing a name, a type and an initial value. As the set

of state variables is unordered and invisible to the rest of the program, the state set can

be increased or decreased without affecting the parts of the program outside the modified

component. In change-merging state variable sets, the operations n, U, and - are equivalent

to the corresponding set operations, U, nl and -. The third part of the tuple, the initial

value, requires an additional check in the change-merging process. These initial values are

ordered using a flat lattice, because they are ordinary data values. The initial value of a

change-merged state variable follows the same change-merging rules as input and output

variables. If all three versions have different initial values for the same state variable, then

the change-merged version contains a T in the place where the initial value is assigned. If

only one of the modifications assigns a different initial value than the base version, then the

change-merged version contains the initial value of the one that was different.

(2) Exceptions. The exceptions interface is a list of identifiers which denote

exception values which may be returned by the operator. Consequently fl, U, and - can be

interpreted as the corresponding set operations, U, nl and -. Exceptions that appear in one

or both of the modified versions, and not in the base, appear in the change-merged program.

Exceptions that appear in the base and do not appear in at least one of the modifications

are not included in the change-merged program.
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( ou) tmd m Dsutioa n Mavimum Ecution Time (MET) is the

ealy timing constraint that appears in PSDL specifications. MET is the maximum &C1U

time that an operator can use to perform its assigned task. Change-merging two MET

constraints, t1 and t2 , can be done as follows:

i 2= min(44,2 )
tflt2 = vnaX(tI,t 2Q

i--Z t2= if t2  tI hen oo else tj
T =0
I =oo

Proposition 2 The eet of MET. form a Brouterian Algebra

Proof:

Let M be the set of all possible METs.

We must show that M, u,n is a distributive lattice, that M is dosed under -, and

that

Va, b, c E M,a -- b <:5 c= a:5 (bUc).

1. (M,u,fn) is a distributive lattice:

Clearly, a U b and a n b exist for any a, b E M, and the reflexive, antisymmetric, and

transitive properties hold, so (M,,u,fn) is a lattice.

M is distributive: Let a, b, c e M. We use a table to illustrate:

anl bUc) an b) u(a n c)
4:5b:5C b b
a<_c<_b C c
b<a<c a a
b<_c<_a a a
c_<a__.b a a
c<_5b<_a a a

From the table it is easy to see that M is distributive.

2. M is closed under -:

Since a - b is always either a or oo for any a and b, M is certainly closed under-.
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3. Foran- a, b, c E-M, a - b<5 c 4== a < (bUc):

Assume. - b< c. Then, a _5 b, since otherwise, a b oo. Since a < b, then a < c.

Thus,. a< (b U c).

Now, assume a < (b U c). Then a < b and a < c, and a - b = a. Thus a- b < c.

Therefore, M is a Brouwerian Algebra.

3. Functionality

The functionality of an operator specification is a description of the behavior of an

operator. It consists of a set of keywords, an informal description, and/or a formal descrip-

tion. Through the use , words, the operator can be distinguished from other operators

in the database during the retrieval process. Informal text descriptions are provided for use

by the engineer. Formal axiomatic descriptions are provided to support automatic retrieval.

The set of keywords can be change-merged using the appropriate set operations,

U, n, and -. The informal description is a sequence and must be changed-merged using

the same method described for input and output parameters. Formal descriptions can be

change-merged using the Boolean algebra structure of the logic in which they are expressed:

zUY = zVy
znf = zAy
z-y = zA-V

4. Data Flow Graphs

In [Ref. 20], a PSDL implementation graph for an operator A is viewed as a graph

DA = {O, L}, where 0 is a set of vertices that represent the component operators of A,

including the constant operator EXT representing external contacts, and where L is a set of

links (labelled edges) which represent the data streams entering and leaving the elements of

0. The labels for the links are the names of the data streams they represent.
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"TaThe ag operation on PSDL data flow graphs is defined in terms of a

bipartite graph BA I {V,S,LI, LO}, where V is the set of operators in DA, S is a set of

vertices which represent the data streams of operator A, LI is a set of edges from a stream

vertex to an operator vertex, representing input links, and LO is a set of edges from an

operator vertex to a stream vertex, representing output links.

Change-merging the data flow diagrams is done by change-merging the graphs

G•,., GA and GB by subsets V, S, LI and LO. The operations u, nl, and - can be

interpreted as the corresponding operations U, n, and -. This change-merge is accomplished

using the following equation:

Gm = 1 0 A- GB..) u [GA n GB] u [GB - GBgaee]

This equation defines a structural or syntactic change-merging operation that does not nec-

essarily correspond to a semantic change-merging operation.

The greatest common approximation is obtained for the Base and the two mod-

ifications by taking the intersection on all components of the graph. Then these common

components are added to the disjoint components of each modification by subtracting out

the parts of the two modifications which are also in the base. This operation preserves the

parts of the program common to all the versions, while ensuring that significant changes

made by the two modifications are included in the change-merged graph.

This method of change-merging the implementation graph of a PSDL program

fails to adequately consider the semantic effects of the changed modifications, as does the

approximate method shown later in this chapter. Although these methods produce a change-

merge that is useful in some cases, they are not nearly as useful as the slicing method

described in Chapters IV and V.

30



5. Data Streams and Control Constraints

a. Data Strmenu

A set of data stream declarations DSA, defines local data streams that are used

only within the implementation of a composite operator, A, and that are not defined in the

spification. The order in which the declarations appear is not significant. They have the

same structure as exception declarations, and can be change-merged using the same rules.

If a stream appears in DSa..., then it appears in DSM if and only if it appears in both DSA

and DSE. If a stream does not appear in DSM.., then it appears in DS, if and only if it

appears in at least one of the sets DSA and DS,. These rules are:

z e DSB.. A zEDSAAZEDSB = zEDSMj
zeDS&.. A -,(zEDSAA^EDSv) = -,(EDSM)

-",(EDS..) A (zEDSAVZx.DS3) = ZEDSM
-,(= -DS,..) A -,(zEDSAVE•DSB) • -,(ZEDSM)

The type declarations of data streams are also significant, as with Input and

Output Streams, and changes to those declarations must be preserved in the merged version.

The type declarations can be merged using a flat lattice structure just as the Input and

Output streams are merged.

b. Control Constraints

Control constraints are a set of preconditions, which control the firing of par-

ticular components, and post-conditions, which filter the output provided by those compo-

nents. The control constraints appear in the change-merged operator according to the same

rules as the data stream definitions. Any control constraint that appears in all three input

versions in exactly the same way appears in the change-merged operator without change.

Any constraint which appears in one or both of the modifications, but not in the base,
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Sapposearu angSd as long as the conditions of the constraint are the same. Changes in con-

ditions are handled differently depending on the type of constraint. Input and output guards,

conditional exceptions, "TRIGGERED IF", "OUTPUT IF", "EXCEPTION IF", and timer

operations have logical predicates as conditions. Timer operations are not change-merged

as straightforwardly as other predicate constraints. Different operations exist for different

activities. Start, stop, and reset are the three timer operations used in PSDL. The timer

operations affect the state of the timer. The start and stop operations affect the run state of

the timer, and the reset operation affects the value state of the timer. The reset operation

is thus independent of the others, and can be merged independently. If a reset operation

appears in all three versions, or appears in at least one of the modifications, but not in the

base, then it appears in the changed merged version as well. The start and stop operations

must be change-merged using a flat lattice ordering relation, as with inputs and outputs.

The predicates that accompany the control constraints are change-merged according to the

usual rule, A[Base]B = (A - Base) U (A n B) U (B - Base), where the operations n, U, and

- are ir•ceted as follows:

aUb • aVb
afb = cAb
a-b • aA-,b

The constraints "PERIOD", "FINISH WITHIN", "MAXIMUM RESPONSE

TIME", and "MINIMUM CALLING PERIOD" have integer values as conditions. These

values are ordered using a fiat lattice and can be change-merged as follows. For "PERIOD"

constraints, if the value is the same in all three input versions, then it appears unchanged

in the merged version. If it is different from the base in one of the modifications and the

same as the base in the other modification, then the change must be preserved and the value

appearing in the modification where it is different appears in the merged version. If all three

versions have different values for the period, then a I or undefined value appears in the

merged version, indicating an unresolvable conflict. "FINISH WITHIN" and "MAXIMUM

RESPONSE TIME" constraints are upper bounds and can be change-merged using the
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same method described for "MAXIMUM EXECUTION TIME". "MINIMUM CALLING

PERIOD' is & lower bound and two MCP constraints, lj and t2, can be change-merged

using the equations shown below:

tl U t2 = maz(t1 ,t 2)
t, n t. = min(tst2)
tl -t-2 if t2_t1 then oo else ti

T =0

Proposition 3 The set of el4 MCP* form a Brouverien Algebra

Proof: See the proof of Proposition 2.

6. Analysis

The work prmented in [Ref. 2ý was a first look at providing a change-merging ca-

pability for PSDL prototypes. It explored some critical issues in the problem and provided

valuable information for work presented later in this dissertation. The work on change-

merging specification has proven to be very valuable and remains virtually unchanged in

the current model. Only the parts of the model concerning timing constraints have been

improved in the current model. The work on change-merging implementations was unsuc-

cesful in providing a useful method. The next sections provide a look at an improvement

over thi method.

E. CHANGING PSDL PROTOTYPES

In [Rdf. 21], another attempt at formulating a model for representing PSDL implemen-

tatims is explored. In this model, PSDL prototypes can be considered iterative versions

of a software system. If S is the intended final version of the software system, then each

successive iteration of the prototype can be viewed as an element of a sequence S1 where

linia..$j = S.
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1. P tpeaas Graphs

Each prototype implementation Si is modeled as a graph Gi = (Vi, E1, CI), where:

9 VI is a set of vertices. Each vertex can be an atomic operator or a composite
operator modeled as another graph.

* E1 is a set of data streams. Each edge is labelled with the associated variable
name. There can be more than one edge between two vertices. There can also
be edges from an operator to itself, representing state variable data streams.

o C1 is a set of timing and control constraints imposed on the operators in version
i of the prototype.

2. Changes to Graphs

The prototype designer repeatedly demonstrates versions of the prototype to users,

and designs the next version based on user comments. The change from the graph repre-

senting the ith version of the prototype to the graph representing the (i + 1)st version can

be described in terms of graph operations by the following equations:

• S1+1 = (V11+, Ej+s, C1+ 1) =f Si+ASj

o A*j = (VAj, VRI, EAI, ERA, CAj, CRP) where:

** Vj+j - Vi = VAj: The set of vertices to be added to Sj.

*. VI - V1 .+1 = VRj: The set of vertices to be removed from S1.

so F4,+1 - E4 = EAI: The set of edges to be added to Si.

so El - EF4+1 = ERI: The set of edges to be removed from S1.

*• C1+1 - C1 = CAI: The set of timing and control constraints to be added to
SA.

s0 C1 - C1+s1 = CRj: The set of timing and control constraints to be removed
from SA.
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141 = S1 + AS 1 is defined in terms of the individual components of S1+1 as follows:

V1+ 1 = VI U VAI - VRI

E1+j = El U EA, - ERI

C1+1 = Ci U CAI - CRi

The following figures show an example of a change made to a composite operator in

PSDL. Figure 3.10 contains a graph representation for a composite operator Opl consisting

o 4 vertices and 6 data streams. Figure 3.11 shows a change to be applied to Opl to produce

Oj. Figure 3.12 shows a graph representation of Op2, the result of applying the change to

OP1.

100
Xl OP, X6 X1 D X

Opl = {V1 ,j,,¢}
V, = {A,B,C,D}
El = {(XI: EXT - A),(X2: A --. B),(X3: A -C), (X4: B -D),

(X5: C -+ D),(X6: D - EXT)}
C, = {max-ezec-time(B, lO0ma))

Figure 3.10: Example of a composite operator in PSDL
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AAOPl = {VRA, VAA, EAA, ERA, CAA, CRA}
VAA = {E}
VRA = {C)
EAA = {(X3: A -E),(X7: E -D)}
ERA = {(X3: A -. C),(X5: C D)}
CAA = {latency(X7, E, D, 5Oms)}
CRA = {}

Figure 3.11: Example of a change made to a composite operator in PSDL

100

X1• X6

Operator Op2 = Opi + AAOPl

op2 = {V 2,E,C 2 }
V2  = {A,B,D,E)
E2 = {(X1: zEXT .- A),(X2: A --+B),(X3: A -+ E),(X4: B -D),

(X7: E -+ D),(X6: D -# EXT)}
C2  = {max-exec.time(B, 100m.), latency(X7, E, D, 50ms)}

Figure 3.12: Example of the changed operator
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F. AN APPROXIMATE METHOD FOR CHANGE-MERGING

PSDL PROTOTYPES

1. Method

In [Re. 21, 23, 25], an approximate method for change-merging PSDL prototypes

is explored. This method is useful in providing a rough approximation to the ideal change-

merge, but was abandoned in favor of the more useful (and provably correct) slicing method

[RM. 23, 24]. It is included to record the effort expended in this endeavor.

Recall the merging function introduced in [Ref. 4, and reintroduced in section D:

M = A[B]C = (A- B) u (A n C) U (C- B).

If the semantic function of a program is represented as a set of pairs, then two compatible

modifications of a semantic function can be merged using this equation.

In this equation, the union, intersection and difference operations are defined as

normal operations on sets. The difference operation, (A - B) for example, yields the part

of the function present in the modification, but not in the base version. The intersection

operation yields the part of the function preserved from the base version in both modifi-

cations. This model preserves all changes made to the base version, whether extensions or

retractions. In this model, two changes conflict if the construction produces a relation that

is not a single valued function.

In this section, we outline an approximate method for merging prototypes using

the change model described in the previous section and the above definition. This method is

approximate, in the sense that the change merging construction is applied to the structure

of a PSDL program rather than to the mathematical function it computes. This method

is simple, corresponds to common programmer practice, and produces semantically correct

results most of the time.
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The approximate method can be understood as follows. All PSDL implementations

are graphs, who.e structure roughly models their functionality. We have represented these

graphs using sets. Different variations of a prototype are the results of different changes

being applied to a common base versioD. We can merge the two new versions A and C by

applying the change that produced A from B to version C, or by applying the change that

produced C from B to version A. The result is the same in either case. Earlier, we expressed

the (i + 1)st iteration of a software prototype as S1+1 = S1 + ASS. Let us consider an ith

version which has been changed in two different ways, via AA and AB. The results of these

two changes are denoted as SA and SB, respectively. Now let us consider a case where the

(i + 1)st iteration is the result of merging these two changes:

S1+1 = SA[SI]SB = (SA - SI) L' (SAnSB) u (SB- Si)

The components of SI+i; Vi+1 , Ei+j and C1.+1 can be computed similarly:

V41+ = VA[VIIVB = (VA - VI) u (VA n VB) u (VB - V)

E1 •1 = EA[EI]EB = (EA-EI)u(EAnEB)u(EB-EI)

CQ.+ = CA[CIJCB = (CA-CI)u nCAfCB)u(CB -Cj)

To demonstrate the concept of the merging operation, we provide the following

example: The base prototype is as in Figure 3.13. Change A is outlined in Figure 3.14, with

the result shown in Figure 3.15. Change B is outlined in Figures 3.16 and 3.17. The merging

operation is performed in Figure 3.18 and the result is shown in Figure 3.19.

The merge operation outlined in Figure 3.18 involves determining the real effect of

changes made to the base, &nd any conflict that may arise due to similar changes between the

two variations. This is a simple example illustrating the merging of two changed prototypes

which do not conlict with one another. In some cases, two changes to a prototype can

conflict with one another, and the result of their merging can be an inconsistent program.

In such cases, the engineer must resolve the conflict off-line.
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AAFishies =VAA, VRA, EAA, ERA, CAA, CRA

VAA = {Monitor-.Bacteria-Level, C ontrol-Wat er..Flow.2 , Display-Status..2)
VRA = {ControL-Water-Ylow, Display-Status}
EAA = {(Bacteria-Status : Monitor..Bacteria-Level --. ControL-Water..Flow-2),

(Bacteria :Monitor..EacteriaLevel --i Display-Status..2)
(O2status Monitor-0.2Level --' Control-Water...Flow-2),
(NH3-Status: Monitor J'H3..Level --. Control-Water..Flow-2),
(H20..Status : Monitor.Jf20-Level --+ Control-Water-Flow..2),
(02: Monitor-.02-.Level --+ Display-Status..2),
(NH3 : Monitor JNH3..Level -~Display-Status..2),

(H20 : Monitor..H20-.Level -,Display-Status-2),

(Activate-Jnlet : Control-Water-.Flow..2 -+ Adjust-IJnlet),
(Activate-.Drain : ControL-Water..Flow..2 --. Adjust-.D rain),
(Inlet-Setting: Adjust.Inlet --o Display-Status-2),
(Drain-Setting: Acjust-.Drain --. Display-Status-2),
(Feeding: Control-.Feeder --+ Display-Status..2)}

ERA (O2-Status: Monitor-02-Level --. Control-Water..Flow),
(NH3-Status : Monitor...H3..Level -4Control-Water..Flow),

(H20-Status : Monitor 1120..Level -. Control..Water-.Flow),
(02: Monitor-02..Level --- Display-Stat us),
(NH3 : Monitor..NH3..Level -. Display-Status),
(H20 : Monitor..H20..Level -*Display-Stat us),
(Activate-,nlet : ControL-Wat er..Flow -+ Adjust.Jnlet),
(Activate-.Drain : Control-Water-Flow --, Adjust-Djrain),
(Inlet-Setting: Adjust-Inlet -+ Display-Status),
(Drain-Setting: Adjust JDrain -+ Display-Status),
(Feeding: Control-.Feeder --* Display-Stat us))

CAA = {maz..ezcecime(Monitor-Bacteria..Level, lO0ms),
max-.exec-time(Display-Status..2, lO0ms),
maz...exec.time(Control-Water-Flow..2, 200ins),
period(Control..Water..Flow2, 200Dms))

CRA = {maz..exec-.time(Display-Status, lO0ms),
maz..exec.time(ControL-Water-Flowv, 200ms),
period(Control-Water..Flow, 2000ma))

Figure 3.14: Example of change AA applied to Fishies
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Thee ae a znmber o possible conflicts that can wise during the merging operation.

Comoicts arise when different changes applied to the prototype affect the same portioni of

the prototype in different ways. Some examples of conflicts are as follows:

1. One change adds an output edge to a vertex A, while another change removes

vertex A from the prototype. In this case, automatic resolution of the conflict is not yet

possible, so the system would have to announce that a conflict has occurred and give the

designer the opportunity to resolve it. In the case of such a conflict the construction produces

a graph that is not well formed, in the sense that it has edges whose endpoints do not belong

to the vertex set of the graph and are distinct from the artificial node EXT that serves as

an endpoint for external flows.

2. The two changes assign different timing constraint values to the same operator,

i.e., (maz.zec..time, F, 50mr) and (max.exec.time, F, 40ma). In this case, the conflict can

be handled automatically, since any operator that executes in under 40ms must also execute

in under 50ms. In situations where different maximum execution times have been assigned,

the minimum value can always be chosen. This is also true of two different values for latency,

m imum response time, and finish within timing constraints. The minimum calling period

timing constraint would have to be merged using the maximum of the different values.

Different period values for the same operator in different changes result in a conflict that

would have to be resolved by the designer. Different control constraints for the same part of

the prototype in different changes can also result in a conflict. Some of these conflicts can

be resolved automatically.

2. Analysis

The approximate method described above provides a method of change-merging

PSDL implementations that is closer to the semantically correct version than the first at-

tempt, but impossible to prove correct. The next two chapters detail a slicing method for
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change-merging which is easily proven correct. Chapter IV details a semantic model of PSDL,

a method of slicing PSDL programs, and a change-merge model which utilizes these slices to

create a merged version which preserves the significant changes in each of the two modified

versions. Chapter V details the algorithm developed to implement this slicing method for

change-merging. This new slicing method has been implemented and integrated into the

CAPS development system.

G. CONDITIONAL MERGING OF WHILE-PROGRAMS

One of the main weakmesses of traditional approaches to data flow analysis and slicing is

insensitivity to the conditions under which data flows actually take effect. This problem has

prevented conflict-free merging of software changes that affect the same output variable, even

in cases where the changes affect disjoint portions of the input space. One way to improve on

this is to augment the dependency graphs with flow guards, so that disjoint partial flows can

be distinguished, and successfully merged. A software merge technique based on conditional

slices captures a finer-grain picture of the threads in a program than merging based on

unconditional slices, and hence can produce more accurate program merges.

1. Conditional Flow Dependencies

There is a flow dependency between two statements in a while-program if a value

assigned by the first statement can be read by the second statement. Determining flow

dependenzcies exactly is undecidable in the general case [RW. 14. Conventional data flow

analysis calculates a weak approximation to the exact flow dependencies by assuming that

all paths in the control flow graph of a program are feasible. This method ignores the

possibility of infeasible paths and non-terminating loops because of its assumption that all

control predicates are satisfiable along all possible paths through the control flow graph.
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Ceevetkmal Sow analysg is guaranteed to find all flow dependencies, but it may report

som. dependencies that are not really there.

In [Ref. 13], Berzins introduces conditional flow dependencies to provide more ac-

curate computable approximations to exact data flow dependencies. A conditional flow

dependency is a conventional flow dependency augmented with a predicate describing the

conditions under which the data flow can take place. The predicates associated with the

data flows enable us to recognize disjoint flows and hence provide a more discriminating

model of the data flow dependencies in a program.

a. Flow Guards

The predicates associated with each conditional flow dependency are called

flow guards. The exact flow guard associated with a flow dependency carried by a variable

v from a program statement al to another program statement s2 is true in a program state

S if and only if all of the following conditions hold:

1. Statement .1 assigns a value to variable v when executed in state S.

2. Program execution will subsequently reach the statement 42.

3. Statement s2 will read the value assigned by statement s1 to variable v.

An approximate flow guard must be true whenever the exact flow guard is

true, and can be true in some cases where the exact flow guard is false. The set of all

approximate flow guards forms a lattice with respect to the ordering defined by the logical

implication relation. The weakest approximate flow guard is true for all states, and the

strongest approximate flow guard is the exact flow guard. Conventional data flow analysis

is equivalent to using the weakest approximate flow guards.

Checking whether exact flow guards are disjoint is undecidable in the general

case, as demonstrated by the program shown in Figure 3.20. Statements are identified by the
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line numbers shown on the left margin. The flow guard for the flow of z from statement 1 to

statement 4 is disjoint from the flow guard for the flow of y from statement 2 to statement 4

if and only if the program fragment P shown on line 3 terminates, which is an undecidable

question. Since program merging algorithms based on conditional flow dependencies need to

check whether flow guards are disjoint, we seek representations for which di jointness checks

are decidable.

1 z:=l
2 y:=2
3 P
4 z:=x+y

Figure 3.20: Undecidability of Disjointness for Guard Conditions

We can get approaiate flow guards with decidable disjointness relations by

using a logic with restricted expressive power to represent the flow guards. One way to do

this is to use propositional guard predicates.

Propositional guard predicates are constructed from the Boolean constants true

and false, Boolean condition vriables associated with the control predicates, the Boolean

connectives &, 1, and -, and the modal operators of the form (P), where P is the condition

variable associated with the control predicate of a while loop in the program.

Propositional guard predicates are interpreted as follows. Condition variables

represent the value produced by the most recent evaluation of the associated control predi-

cate. The connectives &, 1, and -. represent the "and", "or" and "not" operators of standard

propositional logic.
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P -(V,) 'bi (V.) 9W S *end' (V,)
S V:=

IS;S
9 f £"then S "else" S•"f

"[ "while' E "do" S "od'

Figure 3.21: While Program Grammar

b. Conditional Dependency Graphs

Conditional flow dependencies are represented by a conditional program de-

pendency graph. A conditional program dependency graph consists of a set of vertices and

a set of edges. The set of vertices contains a vertex for each assignment statement, an

initialatate vertex, and a final vertex for each output variable. The set of edges repre-

sent conditional flow dependencies and control dependencies. Control dependency edges are

needed to provide a flow path between two sequential parts of a program which do not share

any variables. Control dependency edges are identical to flow dependency edges that do not

carry a variable.

We illustrate the construction of a conditional flow graph in terms of a simple

imperative programming language that provides assignments to scalar variables, sequencing,

conditionals, and while loops. This language of while-programs does not have any explicit

input or output statements, and is defined by the grammar shown in Figure 3.21.

The nonterminals P, S, E, and V represent while-programs, statements, ex-

pressions, and variables, respectively. The Kleene star (*) denotes zero or more instances of

the preceding symbol.

The input variables of a while-program are listed before the "begin", and the

output variables are listed after the "end'. All other program variables are listed between

the keywords "begin" and "is'. The meaning of a program is characterized by the final values

of its outrut variables. The meaning of a program statement is characterized by its effect
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on the program state. The program state consists of the values bound to all of the program

variables. The meaning of an expression is characterized by the value of the expression in

the current program state. The evaluation of an expression cannot affect the program state.

An attribute grammar is provided in [Ref. 13] for constructing the conditional

flow graph for a while-program. The nodes of the flow graph correspond to the assignment

statements in the program, along with an extra initial vertex and a final vertex for each

output variable. Each node is associated with an execution guard. The execution guard is a

predicate that represents the set of program states in which the statement can be executed.

Each edge of the flow graph is associated with a variable name and a flow guard. The

variable name identifies the data carried by the edge. The flow guard is a predicate that

represents the set of program states in which the value of the variable flows along the edge.

The flow guard is the conjunction of the conditions that the source node is executed, that

the destination node is executed, and that all loops on the control path from the source

node to the destination node terminate. Since each node can define the value of at most one

variable, there can be at most one edge between any pair of nodes in the flow graph. An

example of a Conditional Flow Graph is shown in Figure 3.22.

: -a 0

P ifx>O X X-I % +

Q while x> 0do

x.=x- 1;
od

elsm y .- Y~ *y -X.

it while x< 0 do
y.-= y -X;
I:=x 1; 1

od
endif.

end(y):

Figure 3.22: An Example of a Conditional Dependency Graph
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2. Conditional Slices

A slice of a program isolates that portion of the code which affects the program

behavior with respect to some program statement. A conditional slice must differentiate

between portions of the code that affect the meaning of that program statement, but under

different conditions. We define a conditional slice of a while-program, with respect to a

program statement and a flow guard, on the program's conditional dependence graph, G.

For program statement, S and flow guard, P, the slice of G with respect to S and

P, G/{S, P} is a subgraph of G and contains all vertices vi E G, such that there is a path

from v, to S along control dependence edges or flow dependence edges not labeled with the

flow guard - P. The edges in the slice are all of the edges that connect the vertices in the

slice. An example of a conditional slice is shown in Figure 3.23.

begin
y := 0; a&qQ

P ifX>0 X-=X

Q while x > 0 do
y.' y +x; t 0
x:=1- I;

oct
end if; y:=y*-

end(y):0

Figure 3.23: Slice Basel/{Final(y), P)
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A conditional slice of a program is itself a program, as it contains all of the orig-

inal program code which affects the values computed at the final vertex when the input is

restricted .o only those inputs which satisfy the given conditions.

3. Conditional Program Merging

Other approaches to merging while-programs use pieces of each of the input versions

to perform the merge(Re. 28,481. One of these program pieces is the part of the two modified

versions which is the same. This part is known as the presaerved part. The remainder of the

merged program comes from that part of each of the modified versions which is different

from the base. These parts are called the affected parts of each modification. Construction

of these program pieces is done using program slicing.

The preserved part is constructed by comparing slices of each of the modified

versions with respect to subsets of the program statements. The largest subset of program

statements that has the same slice in all three versions defines the preserved part. The

affected part of each of the modified versions is constructed by comparing the slice of the

modification with respect to each of its vertices against the same slice of the base version.

If the slices are different in the modification and the base, then that slice is in the affected

part.

One of the problems inherent in this method of program merging is its inability to

distinguish between different changes to the same slice which cannot interfere. Conditional

slicing alleviates this problem by allowing the different computation paths which can never

be executed for the same input to be considered separately.

Using conditional slicing, we calculate the affected part of a modified version by

comparing slices of the modified version with respect to the program statements and the set

of all possible truth values of the conditional guard predicates at that statement. In this

way, two different paths to the same statement which cannot be taken on a single input are
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not contained in the same slice, thus changes to one path do not necessarily affect the slice

containing the other path.

The merged program is then construted in the same way as the unconditional

method, by taking the graph union of the preserved part and the affected parts of both

modifications.

Consider the example outlined in Figures 3.24 through 3.29. In this example, the

base version is the same as that shown in Figure 3.22 and contains a conditional expression

that partitions the input space into positive and negative integers. If the input value of z

is negative, then one set of statements is executed and if it is positive, then another set of

statements is executed. In Figure 3.24, you see a change made to the then branch of the

conditional expression. In Figure 3.25, you see a change to the else branch of the conditional.

Since both of these branches affect the same output variable, y, the traditional approach to

merging would report a conflict and the merge would fail. This should not be the case,

however, since these two changes can never interfere.

A(x)

begin A QQ'z

y := 0O -•aa

P ifx>O X.-a - I z:=X÷
then YM

Q while x > 0 do
.•x- 1:

od

R while z< 0do
Yz-x+ I;

od
ead if,

end(y);

Figure 3.24: Version A
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begin PQA"Q PR-RR

y: =0; &R4tj

P if x>O0
then

Q while x>O0do0

z := x - I- W
od

else YU =/

R while x<O0do

K K + 1: P-&RR
od

end if.
end(y);

Figure 3.25: Version B

Figure 3.26: Preserved Part of all Three Versions
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Figure 3.27: Affected Part of Version A

Figure 3.28: Affected Part of Version B
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P ifx>Ox -I

Q whilsx>Odo

X:-zx- I-:

R whk x< 0 do

x-=x+ 1;

and if. md
-7y);

Figure 3.29: Merged Version
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IV. SEMANTIC MODEL

In this chapter we describe our model for the behavior of prototypes, present our slicing

method for change-merging prototypes, and present an invariance theorem that guarantees

our method is correct.

A. PROTOTYPING SYSTEM DESCRIPTION LANGUAGE

The Prototyping System Description Language (PSDL) is an enhanced data flow lan-

guage that can be used to specify and implement prototypes of real-time embedded software.

PSDL programs are inherently non-deterministic and can be executed in parallel (Ref. 32].

This section describes a semantic execution model for PSDL programs.

1. Overview of PSDL Semantics

Our change-merging method is based on the behavior of the input programs and not

on their syntax. In this section we define a behavior model for PSDL that we can use to prove

our invariance theorem. The semantics of PSDL have been modeled using algebraic high-level

Petri nets [Ref. 34. We chose a different model which is more applicable to our problem. We

chose to model the behavior of a prototype by observing the data flow history over its data

streams. A prototype's behavior is represented by sets of possible histories over the streams

we call traceJuples. These trace.tuples are composed of sequences of data.tuples called

traes. Each trace.tuple contains precisely one trace per stream. Since PSDL prototypes are

non-deterministic, one trace.tuple does not necessarily reflect the set of possible histories

associated with a prototype, thus we must consider the behavior of a prototype to be the

set of all possible trace..tuples over its data streams. Since PSDL prototypes are intended
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to prototype embedded real-time systems, which may never be turned off, this behavior is

likely to be of infinite length. We use trace-tuples as the base unit for our inductive prool of

the invariance theorem in Section B.2 of this chapter. The following subsections describe the

model starting with traces and building up to the behavior of a prototype, and the possibility

functions we use to construct the behaviors.

2. Traces

The history of a PSDL computation can be described by the histories of all the

data streams, called traces. A trace on a data stream z, denoted r., is the sequence of all

data tuples on the stream. Each data tuple contains a data element zj, the name q, of the

operator responsible for writing zi to the stream, the time twi that zj was written to the

stream, and the time tri at which oj read its input streams to start the computation that

produced zi. A data tuple represents the assertion that the value zj was produced by an

execution of oi that started at time tri and finished at time twi.

Example 1 Truce on a stream z

,'r = [[ooo, 00otrot [I,O, tri, twll ..., [.jI, trigtw ...i

Since PSDL was designed for writing prototypes of real-time embedded software

systems that may never be turned off once started, traces can be finite or countably infinite.

The initial data tuple on a data stream is [zo --.+ , o0 --+ ., two -- 0, tro -+ 0], where

I represents an undefined value, unless the stream is declared as a state variable with an

initial value, in which case the initial data tuple would be [z0 -+ v, o0 -+ DECLOP, two -0*

0, tro -- 0]. DECLOP is the operator in which the state declaration appears, and v is the

initial value assigned in that declaration. For example, if the state stream is declared in an

operator p by the declaration statement STATE z INITIALLY 3, then the initial data

tuple on the stream would be [3,p, 0,0]. Since every trace contains an initial data tuple,

we see that all traces are non-empty and that the minimum length of a trace is one. In a
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data low trema, when a data element is removed from the stream and there is not another

element oa the stream, the value and the operator name elements are replaced by 1..

The write times twi for a given stream form a monotonically increasing sequence

of numbers that represent the amount of time elapsed between when the prototype began

execution and when the value was available on the stream. The read times tri for a given

stream form a monotonically increasing sequence of numbers; the ith element in the sequence

represents the amount of time elapsed between when the prototype began execution and when

the operator ol read its input streams at the start of the computation responsible for zX.

If an operator fails to terminate on any firing, then the trace on any of its output

streams contains only the values which were written to the stream before the firing in which

the operator failed to terminate. If the failure to terminate occurs during the first firing and

no other operator can write to the stream, the trace contains only the data tuple representing

the initial value.

A trace, r, can also be represented by a stream function from a write time to a

triple containing the value, the id of the operator which wrote the value and the read time:

S: TIME ---, TYPE(z) x OPID x TIME, where TYPE(z) denotes the set of all

possible values that can be written to the stream z, OPrD is the set of all possible operators

that can write to the stream, and TIME i6 a non-negative real number. We chose time to

be a continuous value since prototypes can be executed in parallel, and we cannot guarantee

that different processors will execute a precisely the same speeds.

Example 2 Stream Function Representation for a Trace

A trace for a stream z is:

• = [[i, o,, o], [zx, o, 2,3], [-,p, 6, 7]
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The sa .m fuaction representation for this truce would be:

[0,3) -- [.L,.L,O],.= [3,7) [xi, [,o, 2]
[7,oo) -- [z2,p, 6]

In order to use then different representations interchangeably, we need to show

that they ame equivalent. Consider the function, 0, shown in Figure 4.1. 0 is a bijection

that maps a sequence of data tuples into a step function, t1, which is continuous only from

the right.

Limits from the left are not preserved at the boundaries between the data tuples, however.

Theorem 2 4 ias wll-defined and a bijection when restricted to right continuous step junc-
tions with countale range sets.

Proof: See Appendix C.

#(r.) = i,., where ,W.(t) = [za, on, tr,]
where [za, on, twu, tra] E %, n E R & tw <. t & (n = length(r.) or twn+, > t)

-1(.) = i-. where [zj,o,twi,trj] E , iff

(W,.(tW) = [Zo,trj] & twj =,min(.(t) = [j,o,trjJ) )

Figure 4.1: 4': Traces --- + FunctionRepresentations

The meaning of an operator is characterized by a relation between the traces on

the input streams and the traces on the output streams. If a data stream receives input from

more than one producer, then we must have a method for merging multiple traces into one

to determine the behavior of the entire system. The merge function, defined in Appendix

A, Section 3, provides this method for two traces, A and B. It can easily be generalized to

any finite number of traces.
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A shw= bhmam r for a stream z, P., is the set of all possible traces for z. Since a

PSDL computation can be non-deterministic, the history of a computation is represented by

the set of all possible traces for a given PSDL stream. Since the complete stream behavior

for a data stream in a PSDL prototype may not be visible from outside the prototype, it

is necessary for us to consider both visible and generated stream behaviors for a stream. A

uible stream behavior 1ir a stream z is a set of traces written to z by an external producer.

Each trace in the visible stream behavior of z is a subsequence of some trace in the complete

stream behavior for z. The part of the stream behavior which is not produced externally,

we call the generated stream behavior. The traces in the generated stream behavior for z

are also subsequences of traces in the complete stream behavior for z. For example, consider

either of the prototypes in Figure 4.2. Each trace in the stream behavior of z, is a sequence

which contains as subsequences the traces on the hidden and visible parts of z. Thus the

visible behavior and the generated behavior are both projections of the complete stream

behavior.

A truncated trace for a stream z, r, I k, is a finite prefix of r. for which length(T1 I
k = min(length(t.), k) A truncated stream behavior for a stream z, •= I k is the set of all

possible truncated traces, r, I k.

3. Trace Tuples and Prototype Behaviors

A trace tuple is a tuple containing a trace for each stream in a prototype. A trace

tuple can be projected downward to any subset of the streams in a prototype, say X, by

including in the projected trace tuple only those traces on the streams in X. A trace tuple,

T, projected downward to a subset X of the streams of the prototype is represented as Tx.
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GB -Given Behavior H
SB -Stream Behavior

Figre 4.2: Example of pratotype with geerated stream behaviors.
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An .... eb of a taee tuple over the set of data streams in a prototype E(P) is

(,r,,rs,..., r..), z2 I E(P). A visible trace tuple is a tuple of visible trac for each strei.m

in the prototype. A truncated trace tuple is a trace tuple containing only truncated traces:

(-,•,,...,,rj) I k = ((,r,, I k), ... , (-,j I k))

A trace tuple can also be viewed as a vector-valued stream function by extending

the function $ to trace tuples according to the rule:

#((,r•,,..., -,,))(t) = f#,)t,.. (rai)(t)) = T(t)

f(t) is a vector containing one data tuple from each trace in the trace tuple, the value

present on each stream at time t. Using 9, we can also view a trace tuple as a sequence of

vectors, where each vector contains the data tuple present on each stream at a write time t

for one of the streams in the tuple.

Example 3 E.ample of a Trace Tuple on two streams.

For a set of streams X = {z,y• with ,= [[.1, 1,0, 0], [z,, o, 2,3], [z2,p,6,7]] and

7r, = [[1,1L, 0,0], [yj, o, 3,5], [y2, o, 7, 9]], the resulting trace tuple is:

([[.L, .l.,O, O], [Zito$ 2,3], [Z2,p, 6, 7]], [[.l.,l, 19,1O], [yi, o, 3, 5], [y2, o, 7. 9]])

and the corresponding function representation is:

[0,3) -- ([iL, 1, 0], [.1, 1, 0])
[3,5) -- ,(•.o, 21, [.L, 1L, 0])
[5,7) -- ,(z.o, 2], [y, o, 3])

[7,9) --- , ([zp,6),[y.lo,3J)
[9,oo) -- ([- 2 , A 6, Y,, 0o, ])

Since PSDL is non-deterministic, there may be many possible trace tuples for a

prototype P. We call the set of all possible trace tuples for the data streams in P, the

prototype behavior of P, and we represent it as B.
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A prototype behavior can also be projected downward to any subset of the streams

in a prototype, say X, by including in the projected data flow history only the possible

projected trace tuples over X. A projected data flow history over a set of streams X is

represented as Bx. An input prototype behavior for a prototype P is the set of all possible

visible trace tuples over the streams in P.

Example 4 Ezample of a projected prototype behavior on a set containing two streams.

Consider the following set X = {z, y), where the stream behavior for z is a single

trace, [[.L,l.,0,0],[xzo,2,3],[z2,p,6,7]] and the stream behavior for y contains two dif-

ferent traces, {[[L,..L,0,0],[Y,o,3,5], [y2, o,7,9]],[[.LI,.I,0,0], [y,,o,4,6),(Y2 ,o,6,8)]}. Then

the resulting prototype behavior, Bx is:

{([[.L, .. , 0, 0, [zi, o, 2,3, [z2,p, 6,71], [[..L, .L, ,0 ], [yi, o, 3,5], [Y2, o, 7,9]]),

([[1, , O, 00], [IS, o, 2,3], [Z2,p, 6, 7]], [[.L, , 0], 0 ,, [,0,4,6], [y2, o, 6,8]]))

The function representation corresponding to Bx is:

{ [0,3) --- , ([±, 1, 0], [L, 1, 0])[3,5) -&1[•, o, 2], [±L, 1, 0])
[5,7) -- , ([zo, 2], [yi, o, 3])
[7,9) -- ([X2, P, 6], [yI, o, 3])
[9,oo)- ([Z2,,A6],[Y2,o,7]),

[0,3) - ([-L, 1, 0], [L, -L, 0])
[3,5) - ([z,, o, 2], [L, 1, 0])
[5,6) -- 1 ([,o, 2], [yi, o, 41)
[6,8) - ([z 2,P,6],9yI,o,4])
[8,oo) -. ([2,49,6 4,[12,o,6])

A truncated prototype behavior, B I k is the set of all possible truncated trace tuples, up to

length k.

To prove our slice behavior invariance theorem, we also need to extend truncated

trace tuples of length k to length k + 1 by adding one data tuple onto selected traces in
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the trane tuple. We define an i-remental troe tiple to be a vector of sequences of data

tuples over a set of streams, where the length of each sequence is either zero or one, and the

write times for all of the data tuples are the same. An incremental trace tuple represents the

output caused by one firing of a set of zero or more operators writing to different streams of

the prototype. We need a function E for appending sets of possible incremental trace tuples

on to the end of a truncated trace tuple. The e function is defined in Appendix A. This

function takes as operands, a truncated trace tuple over the streams in a prototype and a

set of possible incremental trace tuples over the streams in the prototype, and it produces

the set of all possible trace tuples resulting from adding each of the incremental trace tuples

onto the end of the corresponding sequence in the original trace tuple, for each data stream.

Figure 4.3 shows a summary of the constructs defined in the semantic model of PSDL.

time - {XE Rzx_!0}
data.tuple{t : type) = tuple{z t, o : op.id, tr, tw : time)
trace = sequence{ data-tuple}
stream.behavior = set{trace}
trace-tuple = tuple{s treami : trace}
incremental-trace-Iuple = vector{t :trace} :: length(t) :_ 1
prototype-behavior = set {trace.tuple}

Figure 4.3: Summary of Model Constructs

4. Possibility Functions

Each operator in a PSDL prototype has an input history and an output history.

The input history of an operator o is defined as the prototype's behavior projected over the

input streams of o, BI(.), and the output history of o is the set of all possible trace tuples

written by o to its output streams.

In a PSDL prototype, when an operator fires, it reads one data value from each of

its input streams and writes at most one output value to each of its output streams. The data
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values written and the streams they are written to are determined by the semantic meaning

of the PSDL operator and the associated control constraints. Since PSDL operators are

non-deterministic, their meanings are possibility functions. For every possible input, there

is a set of possible outputs.

To define the possibility function for an operator o, we look at a trace tuple pro-

jection of the behavior a E Bz as) a a sequence of input vectors to o. For every finite prefix

of a applied to o, the result is a set of possible incremental trace tuples over the output

streams of o. This is the possibility function for o, X. :B Bj(.) -* Bo(.). X. takes as input

a projected trace tuple over the input streams of o and a read time, and produces a set of

possible behavior projections over the output streams of o. The read time is the time at

which the last read operation was performed by o on its input streams, and defines which

values were read by o to perform this computation.

Example 5 Possibility function for an operator p which implements the function:

Yk = Zk
2

. -- {({31, 9), ({3, -4}, 16), ({3, -4,9), 81),..., ({3, -4, 9, ..., zI ), Zk2 ), ... }

Example 6 Possibility function for an operator q which implements the state machine:

k
Yk = zi

imi

S= I{({3),3), ({3,-4}, -1), (Q3, -4,9},8),..., (f3,-4,9,..., Z +} ,..

In example 5 you will notice that the y value of each pair is dependent only on the

most current value written to the input stream z. In example 6 the y value of each pair is

dependent not only on the most current value written to the input stream z, but also on the

previous value of y.
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The effects of all PSDL control constraints can be expressed as transformations

on the possibility function of a bare primitive operator. The effect of each type of control

constraint on a possibility function is defined explicitly in Appendix B. In the rest of this

chapter, we assume that the possibility function for each operator includes the effects of any

associated control constraints.

To analyze the effects of various approaches to change merging, we assume that

the possibility function for a network of PSDL operators can be derived from the possibility

functions for the individual operators in the network. This can be done as follows.

We consider a prototype P to be a network of operators connected by the data

streams of P, with behavior B. B is the behavior of the entire prototype. Each operator

contributes to this behavior by reading from its input streams and writing to its output

streams. The values written are determined by the possibility function of the operator. We

can derive the possibility function for the prototype P from the possibility functions of the

individual operators using the following construction:

TeD 'PVT")

This construction produces a set of incrementaLtrace-tuples over all of the streams

in P. The possibility function for each individual operator X. is at the heart of this con-

struction. It produces a set of incrementaLtrace.tuples over its output streams. This incre-

mentaLtrace-tuple is extended to cover all of the streams in the prototype by the function

fill. The function A is then used to isolate each incrementaLtrace.tuple attributable to a

particular read time tr and these are combined over all possible read times up to the current

time t. These incrementaLtrace.tuples are then combined using the function p to pick out

the latest possible write time or read time depending on whether the operator contains a

feedback loop. Each of these sets of incrementaLtrace-tuples for individual operators are

then combined with sets produced by other operators in the subset S using the function 6).

This is done for every possible subset S in the powerset of the vertices of P. Finally, these
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sets of incrementaLtrace-tuples are combined for every possible trace.tuple in the behavior

BofP.

Tv construct the truncated behavior of P of size k, we have to not only produce

the set of incremental-trace.-tuples, we have to append them to the set of truncated trace

tuples of size k - 1. That can be done as follows:

B TIBk = -U ) [Te (t, fill EP,)ýT.,tr)ueIk1 [YIP((P)) [T (0 (2 u
This construction is identical to the previous construction up to the point where the combina-

tion over subsets occurs. At this point, we must append the set of incrementaltrace.tuples

produced by the E function for each subset of the operators to the trace-tuple T in the

truncated behavior B I (k - 1). This guarantees us that we have considered every possible

combination of operators firing at precisely the same time. The result of this construction

is then a set of possible trace tuples truncated at length k. This construction assumes that

the truncated B of size k- 1 is known. Precibe definitions for the functions E, A, p and fill

can be found in Appendix A.

In our work, we assume that execution of the prototype is "fair", in the sense

that, any operator which terminates in isolation will terminate when executed as part of

a prototype. Failure of an operator to terminate is represented by a possibility function

that gives the same set of possible output sequences for all possible extensions of an input

sequence that fails to terminate.

B. SLICING OF PSDL PROTOTYPES

As we saw in Chapter III, Section C.2, a portion of a program's behavior can be

captured by a slice of the program with respect to a single point in the program. We

have developed a similar method that is also valid for isolating a portion of the behavior of

a prototype. This section describes our method for taking slices of PSDL prototypes. One
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of the differces between slicing for PSDL prototypes and slicing for while programs is that

PSDL programs are inherently concurrent and non-deterministic. While programs represent

individual deterministic sequential processes. This represents a major contribution of this

work.

1. Prototype Dependence Graphs

Since PSDL implementations are graphs, we do not need a deep transformation to

translate our prototypes into graphs as is the case for while programs. The only information

we need to add to the current PSDL implementation graph are dependencies resulting from

timer interactions, and an external vertex. The external vertex is added to allow slices of

prototypes with vertices that have no outputs to include those vertices. The following defines

our Prototype Dependence Graph (PDG):

Definition 4 PSDL Prototype Dependence Graph:

A Prototype Dependence Graph (PDG) for a prototype P is a fully expanded'
PSDL implementation graph Gp. In the PDG, Gp = (V, E, C), the set of vertices has been
augmented with an external vertex, EXT, and the set of edges, E, has been augmented with
a timer dependency edge from ol to oj, for each pair of vertices oj, oj E V such that the
control constraints of o0 contain timer operations which affect the state of a timer read by
the control constraints of oj.

Values on a timer dependency edge can be modeled precisely in the same way as

values on a data stream. A data.tuple on a timer dependency edge can be viewed as a tuple

containing the following for each of the tuple components:

v: A pair (c, t) containing the operation c E (Start, Stop, Reset) that last changed
the state of the timer and the value t of the timer at the time of the state change.

op: The id of the operator which last changed the state of the timer.
tw: The time of the last state change.
tr: The time that op read its input streams before the firing

that produced the state change in v.

'A fully expanded PSDL implementation graph is one in which every vertex represents an atomic operator.
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For example, consider the data-tuple [(start, 25),p, 36,34] on the timer stream

Timerl. In this example, the v element of the data tuple is the pair (start, 25), the op

element is p, the write-time is 36, and the readt-time is 34. This means that the operator p

read its streams at time 34, started the timer Timerl at time 36, and the current value of

the timer when the state change was executed was 25. This view of timer dependency edges

allows us to treat them the same as any other edge in the graph.

Top level prototypes do not contain inputs or outputs, so there will always be

vertices which do not write to a stream. Since we construct our slices from sets of streams

and not from vertices, as in slicing of while programs, these vertices could never be included

in a slice. The external vertex is added to provide a way to capture these vertices during

slicing. During construction of the PDG for a prototype, an artificial edge is added to the

graph from any vertex which does not write to an output stream to the external vertex

EXT. These edges are then considered in the construction of the slices of the prototype,

thus allowing those terminal vertices an opportunity to be included. Only one external

vertex is needed for this graph, because each artificial edge added is given a unique name,

and considered separately in the construction of the slice.

2. Slicing Theorem

A slice of a PSDL prototype is defined in terms of the prototype's dependence

graph. It contains the portion of the prototype which affects the history of a set of streams.

This is useful in isolating changes made to a base version of a prototype in a modification.

If the slices of two versions with respect to the same set of streams are different, then there

are significant changes that have been made to one version and not the other.

Informally, a slice is an upstream closure of a set of edges in the graph that includes

all the source nodes for the edges in the slice. A formal definition of a slice follows:
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Defintion 5 Slic of a PSDL Prototype:

A slice Sp(X) of a PSDL prototype P with respect to a set of data streams X is
the ••sbraph (V', E, C) of the PDG Gp where:

(1) V is the smallest set that contains all vertices o1 E Gp that satisfy at least one

of the following conditions:

a) ol writes to one of the data streams in X.

b) oi precedes oj in Gp, and oj E V.

(2) E is the smallest set that contains all of the edges zk E Gp which satisfy at
least one of the following conditions:

a) zk E X.

b) zk is directed to some ol E V.

(3) C is the smallest set that contains all of the timing and control constraints
associated with each operator in V and each data stream in E.

Example 7 Figure 4.4 shows a prototype for a fish farm control system called Fishies.
Figures 4.5, 4.6 and 4.7 display different slices of Fishies.

Theorem 3 Slicing Theorem for PSDL Prototypes:

Let Sp(X) be the slice of a prototype P with respect to a set of streams X. Then
Sp(X) and P have the same behavior on any subset of the streams in Sp (X).

The proof of this theorem is contained in Appendix C, Section 2. The significance

of this theorem is that a slice captures a fragment of the semantic behavior of a prototype,

and the behavior captured by that slice remains the same even if that slice is made a part of

a different prototype, provided that it is also a slice with respect to that new prototype. This

property is the basis for constructing a change merging operation that can provide semantic

guarantees of correctness.
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C. A SLICING METHOD FOR CHANGE-MERGING PSDL
PROTOTYPES

Our change-merging method for PSDL prototypes, illustrated in Figures 4.12 through

4.15 on the prototype versions originally introduced in Chapter III and shown again in

Figures 4.4, 4.8 and 4.9 uses prototype slicing to determine automatically which parts of the

prototype have been affected by a change and which parts have been preserved.

Figure 4.8: Fishie~s1 .2

If the slice of achanged version of aprototype with respect to astream present in

both the base version and the modified version is different than the same slice of the base

vernon, then the behavior on that slice is likely to be different. Therefore that change is

significant, and must be preserved in the merged version. For example, consider the slice

of Fiahieu1.1 with respect to the stream Activaie..Drain, illustrated in Figure 4.10, and the
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same slice of Fishiesj.2, illustrated in Figure 4.11. It is easy to see a portion of the effect of

the change which produced Fishies1 j from Fishies1 .1 . If we were to take the same slice of

Fishice2.2, we would discover that it is identical to the slice of the base version of Fishies.

This illustrates that this part of the Fishies prototype is not affected by the change which

produced Fishies2 2*. Since this change is significant, it must be reflected in the merged

version.

Mcm
02-I loom

02-Status N3 om

NH3-S us H2-e

H20OS

Figure 4.10: SFi,&i..l.l(Activate.Drain)

Slices are important because they capture all of the parts of a program that can affect

the behavior visible in a set of data streams. If two different programs have the same slice for

a set of streams, they also have the same behavior over that set of streams. The preserved

part of a prototype is then the largest set of streams that have the same single stream slice

in all three versions, and the affected streams of each modification are those that have a

different single stream slice in the modified version than in the base version. Performing

a change-merge using Fishica1 .1 as the base version, and Fishiesl and Fishies2.2 as the

modified versions, we get the preserved part as shown in Figure 4.12 and affected parts as

shown in Figures 4.13 and 4.14.
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JR C@mitru~t 1 the preserved part, we consider each stream individually, taking the

slice of each version with respect to that stream. If the slices are the same, then that slice

is added to the preserved part. After all streams have been ( -ked, the preserved part is

complete.

The affected parts are constructed by comparing the slices of each stream in the modified

version against the same slice of the base version. The stream is included in the affected

part if the slices are different.

The merged version is formed by taking the union of the preserved part of all three

versions and the affected parts of the two modified versions. If the slice of the merged version

with respect to the streams affected by each modification is the same as the corresponding

slice of the modified version, then semantic correctness of the merged version with respect

to the modifications is established. The result of change-merging Fishies.1*, Fishies1 .2 and

Fishiea2.2 is shown in Figure 4.15.

Our slicing method has the advantage of a clear semantic criterion for correctness, and

the disadvantage of reporting conflicts whenever two changes can affect the same stream,

regardless of whether there exists a computation history in which the two changes actually

interact or conflict with each other.
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V. CHANGE-MERGE ALGORITHM

From the change-merging models for both the specification, shown in Chapter II, and

the implementation, shown in Chapter IV, we developed a change-merging algorithm. This

change-merging algorithm takes advantage of the fact that the specification and implemen-

tation can be change-merged separately to create a correctly change-merged program. This

chapter outlines the change-merging algorithm in detail and provides a piece by piece analy-

sis of the algorithm for correctness, complexity and coverage. This algorithm was written to

accept a base version and two modifications as input. It is easily extended to change-merge

the result of n modifications to a base version by applying the algorithm iteratively using

the result of the most recent application as one input and the next modification as the other.

The result of a successful iterative application on n versions is a merged version containing

the significant behaviors of each of the inputs.

The algorithm change.merge accepts three expanded versions of a PSDL program as

input. It then extracts all of the PSDL components from each version of the program.

The atomic components are held in storage to be included in the change-merged version

of the program if needed, and the composite component of each program is divided into a

specification part and an implementation part.

Each of these parts are change-merged separately and the results are recombined to cre-

ate the change-merged composite component. From the implementation part of the change-

merged composite component, the algorithm can deduce which of the atomic components

need to be included in the change-merged program. The change-merged program is then re-

turned. If a conflict is detected during the change-merging process, the CONFLICT variable

is set to true, and a flag is placed into the change-merged program at the location of the

conflict to aid the designer in locating and resolving it. Figure 5.1 shows the change-merge

algorithm.
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Algorithm charge.merge(BASE, A, B: in psdl-program; CONFLICT: out boolean)
return padLprogram

begin
1. Extract the psdl-components from each of the input psdLprograms.
2. Change-merge the specification parts for the three input composite components.

a. Change-merge the state declarations.
b. Change-merge the exception declarations.
c. Change-merge the maximum execution times.
d. Change-merge the formal and informal descriptions.

3. Change-merge the implementation parts for the three input composite components.
a. Create the prototype dependency graphs for each version.
b. Create the affected parts of each modified version.
c. Create the preserved part of the base in all three versions.
d. Change-merge the graphs.
e. Change-merge the stream declarations.
f. Change-merge the timer declarations.
g. Change-merge the control constraints.

(1) Change-merge the trigger constraints.
(2) Change-merge the execution guard constraints.
(3) Change-merge the periods.
(4) Change-merge the finish-withins.
(5) Change-merge the minimum calling periods.
(6) Change-merge the maximum response times.
(7) Change-merge the output guard constraints.
(8) Change-merge the exception trigger constraints.
(9) Change-merge the timer operations.

4. Create the change-merged program.
a. Combine the change-merged specification and implementation.
b. From the resulting implementation, determine which of the atomic components

from each of the input versions is to be included in the change-merged program.
5. Return the change-merged program.

end Change-Merge;

Figure 5.1: Algorithm change-merge.
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A. EXTRACTING THE COMPONENTS

Extracting the components from each of the input PSDL programs is done using a

map fetch operation. The algorithm loops through each of the input programs and retrieves

the set of components each one contains. The atomic components are placed in a holding

program so they can be retrieved later if needed for the merged program, and the composite

component is extracted for change-merging. The algorithm fragment used to extract the

components is shown in Figure 5.2.

a. For every component in the Base Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3) else extract the component; end if; end loop;

b. For every component in the A Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3) else extract the component; end if; end loop;

c. For every component in the B Version loop
(1) Fetch the component;
(2) If the component is atomic then bind to holding program for base version;
(3) else extract the component; end if; end loop;

Figure 5.2: Algorithm Fragment for Extracting the Component.

The extraction part of the algorithm requires a loop through the components of each

version to perform the fetch. The correctness of this algorithm fragment can be shown using

simple induction. Since the operations inside the loop are constant and the loop is executed

only once for each component of each program, the worst-case complexity of this part of the

algorithm is 0(n), where n is the number of components in the program. This algorithm

fragment can be used for all fully expanded PSDL programs, since they contain only one

composite component.
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B. CNANGE-MERGING THE SPECIFICATIONS

Change-merging the specification of the top level component requires five operations.

The five operations are responsible for change-merging the components of the specification:

the state declarations, the maximum execution times, the exception sets, and the informal

and formal descriptions.

1. Change-Merging the State Declarations

Change-merging the state declarations is done with the procedure merge.states.

Since the state declarations are a set, normal set operations may be used to merge the state

declarations themselves, but the initial values of the state variables conform to a flat lattice

structure and any change must be preserved. The algorithm merge.states is shown in Figure

5.3.

To show correctness of merge.states, we must show that it correctly implements

the equation (A - Base) U (A n B) U (B- Base). Two internal loops construct this equation.

The first loop captures any state variable declaration which appears in A, but not in BASE;

the (A - Base) part of the equation, and then captures any state variable declaration which

appears in both of the modified versions; the (A n' B) part of the equation. The second

loop captures any state variable declaration which appears in B, but not in BASE; the

(B - Base) part. Since both loops add state variable declarations to the same set MERGE,

the union part of the equation is satisfied.

The execution of merge.-tates requires a membership test and add operation for

every state declared, and these are both linear time operations with the current linked-list

implementation of sets. Thus the entire algorithm requires O(a2) time, where s is the number

of states declared. This can be improved to O(slogs) if balanced trees are used for the sets.
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Algorithm merge..atatesk4w ERGE: in out type.declaration;
BASE, A, B: in type-eclaration;
MERGE-INIT: in out init.map;
A.INIT, B.INIT: in init.map)

for every state variable, a, declared in A
if a is not in BASE, and a is not in B then

add a to MERGE; add initial value to MERGE.INIT;
end if;
if s is in B then

add to MERGE;
if the initial values are the same ir- A-'.1/T and BJTNIT then

add initial value to MERGE.INIT;
else add conflict-expression to MERGE.JNIT;

end if;
end if;

end loop;
for every state variable, a, declared in B

if a is not in BASE and a is not in A then
add to MERGE; add initial value to MERGE.INIT;

end if;
end loop;

end merge.-tates;

Figure 5.3: Algorithm merge.states.
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2. Change-Merging the Maximum Execution Times

Change-merging the maximum execution time constraints is done with the function

merge.met, shown in Figure 5.4. Maximum execution times follow a Brouwerian Algebra

structure as shown by Proposition 2 in Chapter III, Section D.2, and must be merged ac-

cording to those rules.

Algorithm merge.met(BASE, A, B: millu•sec) return millisec
A.DIFF.BASE, B.DIFF.BASE, AJINTB: millisec;
begin

if A<_ B then
AJINT.B:= B;
else A.INT.B := A;

end if;
if BASE<_ A then

A..DIFF..BASE .1.;
else A.DIFF.BASE := A;

end if;
if BASE < B then

B.DIFF.BASE :=--;
else B.DIFF.BASE := B;

end if;
if A.DIFF.BASE < AJNT.B then

if A.DIFF.BASE < BDIFF..BASE then
return A.DIFFBASE;
else return B.DIFF..BASE;

end if;
else if A.JNT.B < B.DIFF.BASE then

return AJ NTB;
else return B.DIFF..BASE;

end if;
end if;

end merge.met;

Figure 5.4: Algorithm merge.met.

The algorithm for change-merging maximum execution times must also satisfy the

change-merging equation (A - Base) U (A f B) U (B- Base). It uses a series of conditional

expressions to calculate the values of A.DIFF..BASE, BDIFF.BASE, and AINT-B,
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which represent the (A - Base), (B - Base) and A n B parts of the equation shown above.

It then combines them according to the rules outlined in Chapter III, Section D.2. This

adherence to the mathematical model guarantees the correctness of the algorithm. Since

this algorithm contains no loops, it requires constant time to execute, so the worst- -.ase time

complexity of merge.met is 0(1).

3. Change-Merging the Exception Declarations and Keywords

Change-merging the exception declarations and the keyword sets is done using

the merge-.idsets function shown in Figure 5.5. This algorithm calculates the equation

(A - Base) U (A n7 B) U (B - Base) in precisely the same way as merge.states calculates

the merge of the state declarations without the initial values.

Algorithm merge-id.set(BASE, A, B: id.set) return id-set
begin

Calculate A - BASE.
Calculate B - BASE.
Calculate AflB.
Return (A - BASE) U(AnB) U(B - BASE).

end merge-id.,seta;

Figure 5.5: Algorithm merge.-.sdets.

The correctness and complexity analyses of merge-.idsets are identical to those of

merge-states, so merging id.sets requires worst case O(z 2) time for exception declarations

and 0(k2) time for keywords.

4. Change-Merging the Descriptions

Change-merging both the informal and the formal descriptions is accomplished

using the function mergeex-' shown in Figure 5.6. merge-tezt implements a flat lattice

change-merge, and any change :rom the base version in one modification must be identical to
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AsMgithm merge..ext(BASE, A, B: text) return text
begin

if BASE = A
then return B
else if BASE = B

then return A
else if A = B

then return A
else return ("Conflict in text. Must be change-merged manually!")

eand if;
and if;

end if;
end mergeiczt;

Figure 5.6: Algorithm mergeiext.

5. Analysis of Specification Change-Merge

Correctness of the specification change-merge part of the algorithm is guaranteed

by the correctns of the individual algorithms which make up the specification change-

meage The worst-case time complexity of the specificaon part of the algorithm is obtained

by adding the complexities of the individual parts as follows:

0(82) + O(X2) + O(k2) + O(1) + O(1) + O(1) = 0(3a2 + = + k2)

where a is the number of state declaration,: is the number of exception declarations, and

k is the number of keywords.

This algorithm is capable of performing change-merge operations on all PSDL

Op pc••o.
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C. CHANGE-MERGING THE IMPLEMENTATIONS

Change-merging the implementation parts is also accomplished by change-merging the

individual parts of the implementation separately. It requires five main operations; change-

merging the graphs, change-merging the stream declarations, change-merging the timer dec-

larations, change-merging the control constraints, and change-merging the informal descrip-

tions.

1. Change-Merging the Graphs

To change-merge the PSDL implementation graphs, we must first convert them to

prototype dependency graphs that accurately reflect all of the timer dependencies between

operators in the prototype as well as the data dependencies. We do this with the buildJPDG

function shown in Figure 5.7. Next we must construct the preserved and affected parts of

the three input graphs according to the slicing rules defined in Chapter IV. The algorithms

for thes constructions are contained in Figures 5.9 and 5.8, respectively. Finally, we must

combine these three parts into a change-merged prototype dependency graph using a graph-

union operation, shown in Figure 5.12.

In building the prototype dependency greph, build.PDG adds an external vertex,

EXT, to the prototype implementation graph, then for every vertex with no outputs, it

creates an edge from that vertex to EXT. This is necessary to ensure that these terminal

vertices are included in the slices, since slices are constructed based on edges not vertices.

Then for every timer declaration in the prototype implementation, build.PDG creates an

edge from every vertex which affects the state of that timer to every vertex which reads its

value.

The algorithm buildYPDG contains two loops. The first loop iterates through the

vertices in the graph, and determines if the vertex has any outputs. For every vertex with

no outputs, the algorithm then adds an edge to the graph from that vertex to the artificial
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A"~ * MWtt IudU.PDGP .pj.eipwm)return pretIpp epndi aj~rph
0 : pretetvejendeucv..raph;

surce, dest : id.set;
beein

G := graph(P);
add external vertex, EXT;
for every terminal vertex, 0, add an edge from 0 to EXT;
for every timer declaration in the implementation of P loop

initialize source and deut to empty.
add every vertex which affects the state of the timer to source;
add every vertex which reads the timer to deut;
add an edge to G from every vertex in source to every vertex in dest;

end loop;
return G;

end buildPDG;

Figure 5.7: Algorithm build.PDG.

vertex EXT. The correctness of this loop can be established by showing that at the end of

the loop, there are no vertices in the graph without output edges, except EXT. Since the

loop cycles through all vertices in the graph and adds an output edge to the graph from any

vertex which does not have one to EXT, this proof is trivial.

The secon,: loop iterates through the set of timer declarations, and builds two

sets for each timer, source and dest. It then adds an edge to the graph from every vertex

in source to every edge in dest. The source set contains all of the vertices using timer

operations that affect the state of the timer. The dest set contains all of the vertices that

read the value of the timer.

To show correctness of this loop, we must show that at the end of each iteration

through the loop, the graph contains all timer dependency edges associated with the timer

declarations thus far encountered, and at the end of the loop, the graph contains all timer

dependency edges associated with the timer declarations in the implementation. We do this

by the following induction proof:
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Basis: Since source and dest are initialized at the beginning of each iteration

through the loop, they are empty before the first iteration, thus the graph contains no timer

dependency edges before the first iteration.

Induction Hypothesis: At the end of the kth iteration, all timer dependency

edges associated with the first k timer declarations are included in the graph.

Induction Step: At the beginning of the k + 1st iteration of the loop, the source

and deut sets are reinitialized to empty. The vertices that affect the state of the k + 1st

timer are added to source, and the vertices that read the value of the k + 1st timer are

added to deut. Now, for every vertex in source, the algorithm adds an edge to every vertex

in deut. Thus at the end of the k + 1st iteration, the graph contains all timer dependency

edges associated with the first k timer declarations, by the induction hypothesis, plus it now

contains all timer dependency edges associated with the k + 1st timer declaration. Thus, we

can conclude that for any number n of timer declarations, at the end of the nth iteration

of the loop, the graph contains all timer dependency edges associated with the first n timer

declarations. 13

The complexity of this algorithm is determined by the sum of the complexities

of the two loops. Since the first loop iterates through all vertices in the graph, performing

worst-case linear operations on each iteration, its worst case time complexity is O(n2), where

n is the number of vertices in the graph, excluding EXT. The second loop contains three

inner loops that iterate through the vertex set of the graph. The first two of these inner

loops contain worst-case linear operations. The third inner loop contains another inner loop

that could also possibly iterate through all vertices in the graph, making its worst case

time complexity O(n2). Thus, the worst case time complexity of the second outer loop is

O(in2), where t is the number of timer declarations contained in the implementation and

n is the number of vertices in the graph. The algorithm then contains two loops, one with
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complotity O(ni), and one with complexity O(W2 ), therefore, the worst case time complexity

of build.PDG is O(W2). '

The next step in change-merging the graphs is finding out the parts of the mod-

ified versions which are different from the base. This is accomplished using the algorithm

affeced.part, shown in Figure 5.8. This algorithm returns the set of edges in the modified

version for which the slice of the modified version is different than the slice of the base ver-

sion. First, each edge in the modified version is checked to see if it is the base version. If it

is not, then it is added to the affected part. Next, the algorithm checks to see if the edge

recieves input from different sources in the modified version than in the base version. If the

sources are different, then the edge is added to the affected part. Finally, the algorithm adds

any edge to the affected part which receives input via an edge already in the affected part.

It is sufficient to include in the affected part of modified version, only those edges

which are different in the modified and base versions of the graph, and the edges which follow

them. Any edge which precedes an affected edge will produce the same slice in both versions

since slices are constructed backward from the edge. The correctness of affected.part is

established by showing that, every in edge in Slice produces a slice which is different in both

G and B. We prove this by an induction over the while loop.

Basis: At the beginning of the first iteration of the loop, Slice gets one edge from

E which is either in G and not in B, or is written to by a different set of vertices in G and

B. This edge will certainly produce a different slice in the two graphs, so Slice contains only

edges which produce different slices in G and B.

Induction Hypothesis: After the first k iterations of the loop, every edge in

Slice produces a different slice in G than in B.
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Algorithm affected..part(G, B: prototype.dependency-graph)
return edge-set
Slice, C, D, E : edgeset;

, Y : edge;
begin

C:= edges(B);
D:= edges(G);
E := difference(D, C);
for every edge z in D loop

if aources(z) in G are different from the
*ourT"a(z) in B then
add z to E;

end if;
end loop;
while E not empty loop

select and remove an edge z from E;
add z to Slice;
for each edge y e D loop

if z.destination 6 sources(y, G) then
add y to E;
remove y from D;

end if;
end loop;

end loop;
return Slice;

end affected-part;

Figure 5.8: Algorithm affected~part
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Induction Step: During the kth iteration of the loop, every edge in G which

follows the kth edge added to Slice in the data flow of G is added to E. At the beginning

of the k + lit iteration of the loop, one of the edges in E is removed from E and added

to Slice. Since we know that any edge which follows an affected edge in the data flow will

certainly produce a different slice in G and B, we know that this edge will as well. Thus by

the induction hypothesis, all of the elements in Slice before this iteration produced different

slices in G and B, and the current iteration adds an edge which produces a different slice

in G and B, therefore after the k + Ist iteration of the loop, every edge in Slice produces a

different slice in G and B. Since E is a finite set, and no edge already in Slice can be added

back into E, the loop will terminate. 0

The complexity of affectedpart is determined by the complexity of the loops

inside. The first for loop iterates over all of the edges in the input graph, G, and adds any

edge to E which is different in G and B or recieves input from different sources in G and

B. The worst-case time complexity of this loop is O(e * n), where e is the number of edges

in G and n is the number of vertices in G. The second while loop iterates over all of the

edges in E, which we know to contain at most the edges of G, and any edge which follows

this edge in G is added to E. This makes the worst-case time complexity of this loop, O(e2 ).

Therefore the worst-case time complexity of affectedLpart is O(e2 ), where e is the number

of edges in G.

The next step in change-merging the graphs is constructing the part of the base

version that is preserved in both of the modifications. This is done using the algorithm

preserved-part shown in Figure 5.9. This algorithm loops over all of the edges in Base and

checks to see if they are in the affected parts of either modification, or have been removed

in one of the modifications. If the edge is not in either affected part and it is in both

modifications, then the slice it produces is the same in all three versions and it is added to

the preserved part.
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Algorithm preervedepart(BASE, A, APA, B, APB: prototype.dependency-graph)
return edge.aet
PP : edge..aet := empty.set;
e : edge;
begin

for every edge E in edges(BASE) loop
if not e E APA U APB and e E edgea(A) n edges(B)

then add e to PP;
endif;

end loop
return PP;

end preserveLpart;

Figure 5.9: Algorithm preaerved..part

Only those edges which appear in all three versions and are not part of either

affected part are added to the preserved part. The correctness of this algorithm is established

by showing that after each iteration of the for loop, PP only contains edges which will

produce the same slice in all three versions. We offer the following proof:

ProL

Basin: Before the first iteration of the loop, PP is empty. Since the slice with

respect an empty edge is an empty graph, this slice is certainly the same in all three versions.

Induction Hypothesis: After the first k iterations of the loop, every edge in PP

produces the same slice in all three versions of the graph.

Induction Step: During the k + Ist iteration of the loop, if the edge e is in the

edge sets of all three versions, and it is not contained in an affected part, then it was not

affected nor removed by either version, thus it is preserved in all three versions. Since after

the kth iteration of the loop, all of the edges in PP produced slices which were the same

in all three versions, and the k + Ist iteration adds another which produces the same slice

in all three versions, after k + I iterations, every edge in PP produces the same slice in all

three versions. Therefore the correctness of prewervedpari is established. 0
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Mwe cTaopladty of puewved~pmrt is determined by the complexity of the for loop.

Since all of the operations inside of the loop are at worst O(e) operations, and the loop

iterates once for every edge in the base version of the graph, the worst-cast time complexity

of preserveipart is O(e2 ), where e is the number of edges in BASE.

Once the preserved part of the base and the affected parts of both modified versions

have been calculated, the slices produced by these sets can be change-merged into a single

graph. The slices are constructed using the algorithm create.slice shown in Figure 5.10.

This algorithm takes a graph and an edge as input and constructs the slice backward from

the edge, according to the definition for a slice given in Chapter IV, Section B.2.

Algorithm crate..alice(G : prototype.dependency-graph; E: edge)
return protoiype-dependency.graph
S prototype dependency.graph;
V : vertezxaet;
w : vertez;
begin

if e in G
then add e to S;
else return empty-graph;

end if;
for every vertex w in G loop

if to writes to e
then add w to V;

end if;
end loop;
while V not empty loop;

select and remove vertex w from V;
add w to S;
add parents of w to V if not in S;
add edges between parents and w to S;

end loop;
return S;

end create.alice;

Figure 5.10: Algorithm createulice
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The correctness of create..-slice is established by showing that the algorithm pro-

duces a correct slice of G with respect to E, according to our definition of a slice given in

Chapter IV.

If e is not an edge in G, then create-alice returns an empty graph, which is the

correct slice of G with respect to e. If e is an edge in G, then e is added to the slice, and any

vertex which writes to e is added to the set of vertices V.Then the algorithm iterates over a

while loop as long as V is not empty. The correctness of the while loop is established by

showing that at the end of every iteration of the loop, the slice S contains only the vertices

and edges which affect the edge e, and after the last iteration of the loop, S contains all of

the vertices and edges in G which affect the edge e.

Basis: Before the first iteration of the loop, the only edge in S is e, and certainly

every edge in S affects e.

Induction Hypothesis: After the kth iteration of the loop, all of the edges and

vertices in S affect the values written to e.

Induction Step: During the k + 1st iteration of the loop, a vertex w is removed

from V and added to S. Since only those vertices which write to an edge in S are in V, and

only edges which affect the values written to e are in S by the Induction Hypothesis, we are

guaranteed that w is a correct addition to S. So after the k + 1st iteration of the loop, S

contains only edges and vertices which affect values written to e.

Since V contains at mct the number of vertices in G, and one vertex is removed on

every iteration of the loop, we are assured that the loop will terminate. Since during every

iteration, any edge which provided input to a vertex in S is added to S and every iteration

adds any vertex which writes to an edge in S, we are assured that after the last iteration of

the loop, all of the vertices and edges which affect the values written to e will be in the slice.

03
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The time complexity of create.slce is determined by the two inner loops. The

for loop iterates over the vertices of the graph one time. This makes the worst-case time

complexity of this loop, 0(n), where n is the number of vertices in the graph. The while

loop iterates over a set of vertices, however through all of the iterations of the loop at most

each edge is visited once, making the worst-case time complexity of this loop 0(e), where

e is the number of edges in the base version of the graph. Therefore, the worst-case time

complexity of create.slice is 0(n + e).

Once the slices are constructed, they are merged using the function graph.merge,

shown in Figure 5.11. This is a very simple graph merging algorithm which uses successive

calls to graph-union, shown in Figure 5.12 to combine the preserved part of the base with

the affected parts of both modifications into a change-merged prototype dependency graph.

Algorithm graph.rmerge(G1, G2, 03: prototype-dependency-graph)
return prototype.dependency.graph
S: prototype.dependency.graph := empty.psdl-graph;
begin

G := graph.union(G1, G2);
G := graph.union(G, G3);
return G;

end graph.merge;

Figure 5.11: Algorithm graph.merge

The graph-union algorithm is used to combine two graphs into one. It accepts two

prototype dependency graphs as input and adds the edges and vertices of one to the other.

The algorithm graph-union makes use of two successive union operations, and

union operations are very well defined. Therefore, the correctness of graph-union is easily

established.

The complexity of graph-union is determined solely by the complexities of the

set union operations, which are linear in the worst case. Therefore, the worst case time
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II

Algorithm graph-union( GI, G2: "prototype-dependency-lp'aph)

return protype.dependency.graph
G : prototype-dependency-#raph := empty-padL-.raph;
begin

G.vertioe := vertiice(G1) U uertices(G2);
G.eges := eges(GI) U edges(G2);
return G;

end graphu.nion;

Figure 5.12: Algorithm graph-union

complexity Ji graph-union is the sum of the complexities of the two union operations, or

O(e + n), where e is the number of edges in the largest of GI and G2, and n is the number

of vertices in the largest of GI and 02.

The correctness and complexity of graph-merge depend solely on the correctness

and complexity of graph.union, which have previously been established. Thus, graph.merge

is a correct algorithm with worst-case time complexity of O(e + n), where e and n are the

number of edges and vertices in the largest input graph.

Once the graphs have been change-merged, the remainder of the implementation

parts must be change-merged. The stream declarations and the timer declarations are

change-merged using the functions merge-streams and mergeJimers, shown in Figures

5.13 and 5.14, respectively. Then the control constraints are change-merged using functions

appropriate to their map type. These algorithms are shown in Figures 5.15 through 5.26.

2. Change-Merging the Stream, and Timer Declarations

The stream and timer declaration parts are modeled as sets, so change-merging

them is done using common set operations. In merge-.atreams, the two for loops construct

the three pieces of the change-meqOng equation for sets, (A- Base), (AnfB), and (B- Base).

The correctness and complexity of mergestrearns are identical to those of rnergeutatei. In

mergetimers, the three pieces of the change-merging equation are constructed separately
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wd amNwd to om . the result. The correctness and complexty of this algorithm is

idea" to that a( merge..idaeta.

Algorithm merge..afreanms(BASE, A, B: typ..dedaration) return type-dedaration
MERGE : tW.dedoration;

MERGE := empty.type.dedaration;
for every stream s in A loop

if s is not in BASE and s is not in B then
add a to MERGE;

end if;
if s is in B then

add to MERGE;
end if;

end loop;
for every stream a in B loop

if a is not in BASE and s is not in A then
add to MERGE;

end if;
end loop;
return MERGE;

end merge.atreams;

Figure 5.13: Algorithm merge..trearnms

Algorithm merge-timers(BASE, A, B: id.eet) return idaset
begin

Calculate A - BASE.
Calculate B - BASE.
Calculate Ar SE.

eturn- (A - BASE) -

end mereetimers;

Figure 5.14: Algorithm merge-timers

3. Change-Merging the Control Constraints

Change-Merging the Control Constraints is accomplished by a series of algorithms

that implement the models defined in Chapter III, Section D. Their correctness is established
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by their conformance to the mathematical models. Each one of these algorithms has worst-

case time complexity of O(n), except merge-trigger.mapa and mergeJtimer.opnmaps, where

n is the number of vertices in the largest input prototype. merge-trigger.maps has worst-

cae time complexity of O(ns2), where n is the number of vertices in the largest input

prototype and 3 is the largest number of streams read by an operator in the prototype.

merge-timer-ops has worst-cme time complexity of 0(nt2), where n is the number of vertices

in the largest input prototype and t is the largest number of timer operations in the prototype.

Since these algorithms all execute independently, the worst-case time complexity for the

entire control constraints section is 0(ns2 + nt 2).

Algorithm merge-trigger.maps(VERTS : idlet; BASE, A, B: trigger-map)
return trigger-map
MERGE : trigger.map;
opid : padLid;
base-trig, a-trig, k.trig, merge-trig : trigger:
begin

for every op.id in VERTS loop
retrieve base.trig trom BASE;
retrieve a-trig from A;
retrieve b-trig from B;
merge-trig := merge-triggers(base-trig, a-trig, b-trig);
bind merge-trig to op.id in MERGE;

end loop;
return MERGE;

end mergeirigger..maps;

Figure 5.15: Algorithm merge-trigger.maps

There is also an informal description of the implementation part that must be

change-merged. The implementation descriptions are change-merged using the merge.ext

function shown in Figure 5.6.
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AiJd umpJr4##w*(ftASSE, A, 8: trigger) return trigger

abeam : i4n;

if BASE = A then
if BASE - B then

MERGE.t :- BASE.tt
MERGE .streamn := merge-id-ets(BASE.strean., A-.treams, B.streams);

return MERGE;
else return B;

end if;
aim if BASE = B then

return A;
elm if A = B then

return A;
return conflict;

and if;

end it-
end waerge-iriggers;

Figure 5.16: Algorithm merge-triggers

Algorithm merge..eze.guard.map.(VERTS: id.ei; BASE, A, B: emec.guar-map)
return exec4IAard-map
MERGE: exzec..uarmap,
o.pid: psUdid;

ejg, -e, b.eg, merge.eg: expreson:
beein

for very op.-id in VERTS loop
retrieve base.eg from BASE;
retrieve xeg from A;
retrieve Leg from B;
merpge.eg := merge.expre..ion.(base.eg, a-eg, bLeg);
bind merge.eg to op-id in MERGE;

aid loop;
return MERGE;

end merge.ec..guard.map.;

Figure 5.17: Algorithm merge..ezecguardnmaps
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Algorithm merge.ezpressions(BASE, A, B: expression) return ezpression;
begin

if equal(BASE, A) then
if equal(BASE, B) then return BASE else return B; end if;
else if equal(BASE, B) then return A;

else if equal(A, B) then return A;
return conflict;

end if;
end if;

end if;
end merge-ezpresaions;

Figure 5.18: Algorithm merge.ezpressions

Algorithm merge.output-guard-mapa(VERTS : id-.et; BASE, A, B: out-guard.map) re-
turn out.guard.map

MERGE: out-guard-map;,
op-id : psdl-id;
baseog, a..og, Log, merge-og : expression:
begin

for every op.id in VERTS loop
retrieve base.og from BASE;
retrieve a.-g from A;
retrieve bog from B;
merge-og := merge.ezpreaaions(base.og, a.og, Log);
bind merge-og to op.id in MERGE;

end loop;
return MERGE;

end merge.outputguard.maps;

Figure 5.19: Algorithm merge-output-guard-maps
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Algadthm meg..azcsptrigger..map.(VER'S: id-set , BASE, A, B: excep-trigger..map)
retwur eacepringger-map
MERGE: excep-trsggeravaap-
epaid psAd-d
4.5.4, .a4, Let, mnerge-aet : expreasson:
begin

for every ep-id in VERTS loop
retrieve .ase-et fr-om BASE;
retrieve a-ct from A;
retriev Let from B;-
mcrge..et := merge..expressionu(bkae.et, aet, Let);
bind merge-4 to op..id in MERGE;

end loop;
return MERGE;

end merge..ezcepiriggera'naps;

Figure 5.20: Algorithm merg.e-ecep..trigger-maps

Algorithm merge-timer-op-maps(VERTS : id..set; BASE, A, B: iimer-opanap) return
tsvner-OP..map

MERGE: excep-trigger-nar,
op~id: pedlid;
base-adt, a-set, Ladet, merge-st : expression:
be&i

for every op-id in VERTS loop
retrieVe ban-adt from BASE;
retrieve a-set from A;
retrieve b-aet from B;
mnerge-aed := merge-timer-opjaet(bvse..aet, a-s.et , Ladt);

bind merge...et to op-id in MERGE;
end loop;
return MERGE;

end mergejimer..op-raps;

Figure 5.21: Algorithm merge..timer..op..maps
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Algorithm merge imer.op..aet.(BASE, A, B: timer-op.set) return timer-op.set
MERGE: timer.op.-et;
Lop: timer-oW
begin

for every Lop in BASE loop
if member(top, A) then

if member(Lop, B) then
add(top, MERGE);

end if;
end if,

for every Lop in A loop
if notmember(top, MERGE) then

if member(Lop, B) then
add(top, MERGE);

end if;
end if;

for every Lop in B loop
if notmember(Lop, MERGE) then

if member(top, A) then
add(top, MERGE);

end if;
end if;

end loop;
return MERGE;

end merge-timer-op-aea;

Figure 5.22: Algorithm merge-timer.op..eta
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Aipaitbm uwge.Fried(VERTS : id..aet; BASE, A, B: timning-an~p) return timing-map
MERGE: timing-map
ep-id: pedLids,
&ease..pd, a-valo, L.va1, merge-vaI : millisec := 0;

for every ep..ad in VERTS loop
retrieve bae-eval from BASE;
retriev "~al fr-om A;
retrieve baval from B;
merge~xal := rnerge-imring..data(base..val, o..val, &.val);
bind merge-vai to ep-sd in MERGE;

end loop;,
return MERGE;

end merge..priod;

Figure 5.23: Algorithm merge.period

Algorithm mergcjw..or..mrt(VERTS : id-iet; BASE, A, B: timing-map)
return tining-inmp
MERGE : timing..mapr
op..id : pdUid;
base-vai, a-vatJ, &.u.I, merge-val: milijeec := 0:
be~gin.

for every op-id in VERTS loop
retrieve ase-val from BASE;
retrieve "~al fromn A;
retrieve bval aI rm B;
merge..vai:= merge-snet(bae-vala, eLUal, Lrnul);
bind mergexanl to op-id in MERGE;

end loop;
return MERGE;

end merge-fw..r-mrt;

Figure 5.24: Algorithm merge-fw..or.mrt
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Algorithm merge-.min.calLper(VERTS : id-set; BASE, A, B timing.map)
return timing-map
MERGE: timing.map;
op.id: pedl-id;
baee.val, a.val, b&val, merge.val: millisec:= 0:
begin

for every op-id in VERTS loop
retrieve base-val from BASE;
retrieve a.val from A;
retrieve b.val from B;
merge.val := merge.mcp(base.val, a.val, .val);
bind merge-val to op.id in MERGE;

end loop;
return MERGE;

end merge.nraincallper;

Figure 5.25: Algorithm merge-min.call;per

4. Analysis of Implementation Change-Merge

Change-merging the implementation of the top level component requires four main

operations; change-merging the graphs, change-merging the stream declarations, change-

merging the timer declarations, and change-merging the control constraints.

Change-merging the graphs requires that each graph be converted to a PDG using

build.PDG which requires 0(tn2 ) time, where n is the number of vertices in the graph and

t is the number of timers declared in the implementation.

After the prototype dependency graphs are constructed, the affected parts of each

modification are constructed using affected.part which has worst-case time complexity

O(e2), where e is the number of edges. Then the preserved part is constructed, and it

has worst-cue time complexity O(e2 ).
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Algorithm met gcimcp( BASE, A, B: rillisec) return rnillisec
A-DIFF-.BASE, BJJIFF-.BASE, A-INT-.B :millisec;
begin

if A 2 B then
A-INT..B: B;
else AJNT..B: A;

end if;,
if BASE ŽA then

A..DIFF-BASE := T
elme AI)IFF-.BASE: A;

end if-,
if BASE>aB then

B-DIFF..BASE := T
else B.J)IFF..BASE: B;

end if;
if AJ)IFF..BASE 2: AJINT.B then

if A..DIFF.BASE>2 B-DIFF..BASE then
return A..DIFF..BASE;
elme return BJ)IFF..BASE;

end if;
else if A-INTB 2t BJ)IFF-.BASE then

return AINTSB;
else return BJ)IFF..BASE;

end if;,
end if;

end merge,,1cp;

Figure 5.26: Algorithm merge..mcp.
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After all three of the pieces required for change-merging the graphs have been built,

then they must be change-merged using graphjmerge, which contains two succwive calls

to graph.union, which we already know requires worst-cue 0(n + e) time. Therefore, the

worst-cue time complexity of change-merging three graphs is:

0(tn2 ) + O(e2) + O(e2) + O(e2 ) + 0(n + e) = 0(tn2 + e2)

The edges in the graph almost always outnumber the vertices, so we call this O(e2).

The correctness of the Implementation Change-Merge is established by the cor-

rectness of the individual parts. The complexity of the Implementation Change-Merge is

dominated by the complexity of the change-merging of the graphs, so the worst-case time

complexity of the Implementation Change-Merge is 0(e2).

D. CREATING THE CHANGE-MERGED PROGRAM

The last algorithm used in this change-merging tool is build-prototype, shown in Figure

5.27. This algorithm takes the change-merged graph and removes the artificial timer edges

and external vertex. It then sets the change-merged graph in the change-merged prototype.

Algorithm build.prototype(P : in out ped/_component; G : prototype-dependency-graph)
A : padl-graph;
begin

asign G to A;
remove external vertex;
remove timer dependency edges;
set.graph(A, P);

end buildprototype;

Figure 5.27: Algorithm buildprototype

The timer dependency edges are removed by iterating through the edges of the graph

and removing the appropriate edges. This requires iteration over the edges of the change-

merged graph, making the worst-case time complexity of this algorithm O(e).
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B. ANALYSIS OF THE CHANGE-MERGING ALGORITHM

The correctness of the algorithm change-merge is established by the correctness of

the individual parts. Since these individual algorithms are executed independently of one

another, there are no dependencies between them, other than those already discussed. The

complexity of this algorithm is calculated by adding the complexities of the individual parts.

It is easy to see that the complexity is dominated by change-merging the graphs in the

implementation part, which requires O(e2 ) time, where e is the number of edges in the

largest graph. Therefore, the worst-case time complexity of the entire algorithm is 0(e2 ).
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VI. CAPS MERGE TOOL

In this chapter we describe an implementation for a change-merging tool resulting from

this effort. The tool has been almost fully implemented and can easily be integrated into the

CAPS Prototyping Environment. It is invoked through the Manager's Interface and provides

a substantially beneficial tool for effective management of large software prototypes. Section

A of this chapter describes the requirements for the tool. Section B provides the instructions

for using the tool. Section C describes the testing performed on the tool.

A. REQUIREMENTS

The requirements for this tool are divided into three parts; interface, functionality and

conflict reporting. Each of these parts are discussed separately in the subsections that follow:

1. Interface Requirements

a.- Interface must be consistent with other CAPS interfacer. CAPs uses a menu-

driven interface at the top level and windows with selection lists and pushbuttons at lower

levels. To be consistent, a pushbutton type interface was required for the change-merge tool

as well.

b. User must be able to choose any prototype currently in the working dire ctory.

The interface should provide a list of the prototypes currently in the user's working directory,

and the capability for the user to select one of these prototypes.

c. User must be able to select different versions and assign them to the different

merge parameters by pushbutton: After the prototype has been selected, the interface should

110



rovwide a lit o the cunmt versions a( the prototype. The user should then be able to select

each version by clicking with the mouse, and assign the selected version to one of the merge

parameters, base, versiorLa or version.b, by pushing an assign button.

d. User should be satisjied that the selection made has been assigned to the correct

parameter. The interface should provide visual reinforcement that the selection made has

been assigned to the correct parameter by showing the selected version in a window labeled

with the parameter name.

e. User should be able to initiate the merge tool by pushing a button: The interface

should provide a button labeled "merge" which, when pushed, will call the merge tool for

the parameters given.

f. User should be notified when merge is complete: The interface should provide

a pop-up window that alerts the user that the merge is complete. The result of the merge

should be printed in a window labeled "result".

g. User should be notified if a conflict occurr. The interface should provide a pop-up

window that alerts the user that a conflict has occurred during the merge.

h. User should be able to commit the result to the design database directly from the

merge interface A pushbutton should be provided that allows the manager using the tool

to commit the result of the merge to the database, even if conflicts have occurred.

2. Functionality Requirements

a. Tool must be able to retrieve the three versions of the prototype when provided

only the paths to their locations: The interface will provide the full directory names for each

of the input versions as input to the tool. The tool must be able to combine all of the PSDL

source files in each of the version directories into one single file and call the PSDL parser to

convert the text version of the prototype into an ADT representation of the prototype.
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b. Tool must call the PSDL expander to provide fully expanded PSDL programs

as input to the change-merge procedur. The PSDL expander is a tool which takes a multi-

leveled prototype and converts it into a fiat prototype with only one composite component.

c. Tool must change-merge the three versions of the prototype according to the

models provided by this dissertation: The change-merge tool must be able to retrieve the

composite component of each version, and perform the change-merge operation using these

three components as input. It then must provide a new composite component for the merged

prototype. The atomic components will then be added to the merged prototype according

to which version supplied those components to the merged implementation graph.

d. Tool must split the final version of the prototype into separate fies for each of

the component implementations and specificationr. The tool must be able to take the merged

prototype and output it into separate files in the result directory. Each file should contain

either the specification part or implementation part of one component. If the component

is the composite component, then the name of the file will be "prototypLename.imp.psdl"

or "prototype.name.spec.psdl", depending on whether it contains the implementation or

specification part of the component, and where "prototype.name" is the name of the com-

posite component. If the component is an atomic component, then the name of the file

will be "prototype.name.component.namel.imp.psdl" if it contains an implementation or

"prototype-name.componenLname.spec.psdl" if it contains a specification, where "compo-

nent-name" is the name of the atomic component.

3. Conflict Reporting Requirements

a. Tool must report to the user where in the merged component a conflict has

occurred In each piece of the change-merged program where a conflict has occurred, the

tool must place a flag indicating to the designer where the conflict occurred. This will

prevent the user from having to search for the conflict in order to resolve it.
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ON Sqi*ed The tool will provide the most chaege-merged program possible whenever a

colfict has occurred. Cofiicts in one part of the program should not affect other parts of

the program which are not dependent on the part with the conflict.

B. USING CAPS MERGE TOOL

To invoke the CAPS merge tool, select the merge prototypes option from the manager's

interface. The CAPS merge tool window will be displayed as shown in Figure 6. 1. The list

of currently available prototypes will be displayed in the prototypes box at the lower left of

the window.

- -__ ___ __I_ - I

V -m b A lI " - [ " I

Figure 6.1: CAPS Prototype Merge Tool Interface
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1. Selecting Prototypes and Versions

To select a prototype, click the left mouse button over the name of the prototype

to be selected. Clicking twice on the same prototype will deselect the prototype. After

selecting a prototype name, a list containing all of the versions of the selected prototype will

appear in the versions box at the lower right of the merge tool window, as shown in Figure

6.2. To select a version, click the left mouse button on top of one of the versions. Again,

double clicking on the same version will deselect the version.

IM AIIdam" U

Figure 6.2: CAPS Prototype Merge Tool Interface with List of Versions

2. Performing the Merge Operation

To perform a merge, three versions must be selected and assigned to the merge

parameter boxes. To assign parameters, first select the version, then click the left mouse

button on the "assign" button next to the parameter to be assigned. Figure 6.3 shows the

window after all three parameters have been assigned. Changing a parameter assignment is
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done by selecting the correct version and clicking on the "assign" button again. Every push

of the "assign" button reassigns the parameter to the selected version. To clear all of the

parameter assignments, use the clear button located on the right center of the window.

Figure 6.3: Assignment of Parameters

When all of the parameters have been assigned, the "merge" button located on the

right side of the window must be pushed. This will invoke the change-merge tool. When the

change-merge tool has completed its execution, one or two windows will appear on the screen.

The "merge complete" window, shown in Figure 6.4, will always appear after execution of the

tool. If a conflict was detected during the change-merge, the "conflict notification" window,

as shown in Figure 6.5, will also appear. The manager can either choose to keep the result

and manually resolve the conflicts or abandon the result and start again.

Figure 6.4: Merge Complete
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Figure 6.5: Notification of Conflict

3. Commit Merge

Once the merge has been completed, the manager has to specifically commit the

result to the design database. To commit the merged result, the manager clicks the left

mouse button on the "commit merge" button on the right side of the CAPS Merge Too]

window. A new version number will be assigned to result and it will be added to design

database as a permanent part of the prototypes configuration.

At this point, the manager can choose to perform another merge operation or exit

the tool. If another merge is desired repeat the process described above as many times as

desired. To exit the CAPS Merge Tool, click the left mouse button on the "exit" button at

the bottom of the window, and control will be returned to the CAPS Manager Interface.

C. TESTING

We tested the change-merging tool by applying it to a series of sample prototype projects

each testing a different part of the tool. These projects included real prototypes which

were developed by students in the CAPS Research Team as well as examples constructed

specifically for this test. The largest of these prototypes is the Command and Control System

described in [Ref. 38]. The implementation for this prototype contains 27 vertices and 35

edges with a full range of control constraints. Four modified versions of this prototype were

116



- 4 , -- - • • • • • : " -' " • '

pmftlm we* cese, and the change-merge tool was applied to different combinations of

the four, each testing a different part of the tool.

Timing tests were conducted to provide a realistic assessment of the speed with which

the tool would operate. During the test it was determined that the time required to process

each of the input files (combining the multiple files into one, parsing the input files, and

expanding the prototype to a flat graph) took a significant amount of the time for the

system to run. In the case of the Command and Control prototype, the system took on

average six seconds to process each file and 25 seconds to change-merge them. In the case

of the smaller prototypes, the times were significantly less.

Since the current implementation is not as efficient as an optimal one outlined by the

algorithms in Chapter V, we can expect a significant speedup for the optimal implementation.

In each test of the change-merge tool, the results were exactly as expected. The tool produced

conflicts whenever expected and correct results when they were possible.
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VII. CONCLUSION

A. WHAT WE HAVE ACCOMPLISHED AND WHY IT IS IM-
PORTANT

The purpose of this research was to provide a computer-aided method for combining

and integrating the contributions of different people working on the same prototype. It is

commonly known that one of the most time consuming and problematic parts of developing

large software systems is combining independently developed pieces of the system and en-

msring they do not conflict. We developed a computer-aided method for merging changes to

a prototype which will always produce a correct result or report a potential conflict. Using

this method provides a prototype development manager with the ability to assign different

development tasks for the same prototype to different members of the development team

and be assured that the pieces can be integrated together after their completion in a safe

manner. This method will either produce a change-merged prototype that is correct with

respect to the different updates or it will notify the manager that a conflict has occurred.

We found a solution to an analog of this problem in previous work done on integrating

different versions of while programs at the University of Wisconsin [Ref. 28, 42, 29]. The

main difference between their method and ours is that while programs are very different

from data flow programs. Data flow programs are inherently parallel and non-deterministic,

and the class of enhanced data flow programs used in PSDL also include hard real-time

constraints.

We proved our method correct by observing that slices of prototypes which isolate a

portion of the prototype's behavior will always behave the same in any prototype where

they are well defined slices. Using the Slicing Theorem in Chapter IV, we were able to show
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tM as ia8g tas dsl a th meraged version of the prototype with respect to the affected

parts at eah modification was the same as the same slice of the modification, the changes

introduced by that modification were preserved by the method.

To prove this theorem, we had to develop a computational model of the PSDL language.

Chapter IV provides a detailed development of the model of the language from defining

the behavior on a single stream in the prototype to constructing the behavior of the entire

prototype from the behaviors of the individual operators in the prototype. This construction

is possible because we showed in the Independent Operator Lemma in Appendix B that the

possibility function for an operator is not determined by the context in which it is placed.

As long as the operator is given the same input, it will behave in precisely the same way in

any prototype

From the model, we developed an algorithm which can perform the change-merge in

0(e 2) time and 0(n 2) space, and an implementation which provides a working change-

merge tool to be used in the Computer-Aided Prototyping System. The algorithm and tool

demonstrates the feasibility of our method for problems of practical size.

During the course of this research, we also proposed an improved method for slicing

and merging while programs which provides a strictly more accurate method than previously

defined methods. No proof of this method is provided however. That will be left to future

work.

B. WHAT STILL NEEDS TO BE DONE

We couldn't possibly solve all of the world's problems in the short amount of time pro-

vided, so there are still many out there to be tadded. Some of the problems that we intend

to continue working on are providing a method for change-merging different versions of an

abstract data type written in PSDL. Our method will currently handle the operator imple-

mentations for ADTs, but fails to provide a method for integrating the data representations.
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Another area which needs consideration is the area of merging programs in high level

programming languages, like Ada. In prototyping large systems, it is very important to auto-

mate as m- iy of the development tasks as possible to minimize the drain on resources caused

by monotonically decreasing budgets. One of the first tasks to be finished is completing the

formalization of the conditional program merging we proposed in Chapter III.

Another area that warrants further study is in further improving the conflict detection

methods used in change-merging. Automatic conflict resolution tools would provide project

managers with an even greater degree of confidence in the change-merging tools.
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APPENDIX A

FORMAL DEFINITIONS

This appendix contains formal definitions of the types, properties, and functions used

in our behavioral model of PSDL.

1. TYPE DEFINITIONS

a. data-.tuple{t: type) =

tuplefvalue : t, operator: op-id, trite.time : real, read-time : real)

b. trace{t: type) = sequence{data.tuple{t))

c. stream-behavior{t : type) = aet{trace{t))

d. trace.tuple{ P : prototype) = tuple{trace{type{s) :: u E E(P)))

e. prototype-behavior{P : prototype} = set{trace.tuple{P})

f. incrementaLtrace-tuple{t : writetime} =
tuple{data.tuple{typels) SUCH THAT8 E E(P))

:: data.tuple.writeitime = t)

2. INVARIANT DEFINITIONS

We assume that the implementation of an operating system where a PSDL prototype

is being executed will guarantee mutual exclusion when two operators executing in parallel

wish to write to the same stream at the same time. Because we assume this control on write

access for data streams, we can guarantee the following invariant is true for all data streams

in a PSDL implementation.
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a. monotonic.time(t : trace)
ALL (i, j: nat SUCH THAT 1 < i < j < length(t)

:: t[iJ.write ine < t~j.write.timc
- The write times in a trace are monotonically increasing.

Since an operator writing to a data stream had to read from its input streams before

it completes execution, we can guarantee that any data tuple in a trace will satisfy the

following invariant:

b. flring.invaxiant(t : trace)
ALL (i: nat SUCH THAT 1 : i _ length(t)

:: (tfij.read.time < t[iJ.write-time) I (t[i].read.Iime = t[ij.write-time = 0))
- The write time in any data tuple is strictly greater than the read time
- in that data tuple, unless it is the initial data tuple.

If an operator receives input from a feedback loop, then the vertex associated with that
operator is on a cycle in the PSDL implementation graph. It is necessary to know that
an operator is on a cycle because this information affects the possibility function of that
operator.

c. on.a.cycle(o: op-id)
- o provides output to a feedback loop which in turn provides input to o.

3. FUNCTION DEFINITIONS AND PROPERTIES

a. Merging Traces

In PSDL, it is possible for more than one operator to write into the same stream.

If this is the case, each of these operators independently writes a sequence of data tuples

to that stream. These sequences merge to form a single trace for the stream. The function

merge specified below shows that this combination of sequences is well-defined. Propositions

4 through 8 state properties about the function merge which are needed for our discussion

of possibility functions in chapter IV.
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marQZfl, t2: trace SUCH THAT ALL (i, j: nat:: tl[iJ.•rite.time 6 t21i].write-time)
REPLY (t3: trace)

WHERE monotonic-time(t3) & firing.invariant(t3) &
length(t3) = length(t1) + length(t2) - 1 & tl[0] = t2[0] = t3[0]
-- Every trace contains an initial data.tuple with index zero.

ALL (i: nat SUCH THAT 1 <i < length(t3)
SOME(j: nat:: (t3[i] = tl[j] & 1 _j _< length(t1))

I (t3[iJ = t2[j] & 1 < j < length(t2)))),

ALL (i: nat SUCH THAT 1 <i < length(t1)
:: SOME(j: nat:: t3'] = tl[i] & 1 : j 5 length(t3))),

ALL (i: nat SUCH THAT 1 <i < length(t2)
:: SOME(j: nat:: t3[j] = t2[i] & 1 < j _ length(t3)))

Proposition 4 merge is well-defined

merge is a total, single-valued function over the specified domain.

ErAfo

Let tI and t2 be traces on a stream SUCH THAT

Vij E. R,tl[i].write-time 91 t2Uj].write-time.

Suppose t3 = merge(tl,t2) and M4 = merge(tl,t2) SUCH THAT t3 9 14.

Since t3 and M4 are both valid results of merge(tl, t2), we conclude that they both

satisfy monotonictime and length(t3) = length(t4) = length(tl) + length(t2) - 1.

Since t3 6 M4, i E It I i < length(t3) SUCH THAT

t3[ij.value 96 t4[i].value or t3[sl.operator # t4[i].operator or

t3[i].write.time 96 t4[i].write.Iime or t3[i].read.time 9 t4[i].readtime or

But, by the definition of merge, every element in both t3 and M4 are elements

of either t1 or t2, which have no common write-times, and since both t3 and M4 satisfy
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monotonic-time, there is only one way to combine tie elements of tl and t2 into a single
.1

trae that satisfies monotonic-ime. Thus t3 = t4, and we have a contradiction. merge is

well-defined. 0

Proposition 5 merge satisfies monotonic-time

if moewtooni cime(tl) and monotonic-time(t2) then monotonic.time(merge(tl, t2)).

Proo

We assume that ti and t2 have no common write times, and that monotonic-time

is satisfied for both tl and t2. Let 03 = merge(tl, t2). We show t3 satisfies monotonic-time

by induction.

Basis: length(t3) = 1

Since every trace has a data-tuple with index zero, then t3 is the trace with only

an initialdat&.tuple, and monotonic-time is satisfied.

Induction Step: Assume that t3 I k satisfies monotonic-time. Since tl and t2

satisfy monotonic-time, and they do not contain data-tuples with the same write times, we

know that no matter which of t1 and t2 the k + 1st element of t3 comes from, its write

time will be greater than twt, So, we can conclude that the k + 1 element of t3, when

added will have worite-time greater than t3[k]. Since 03 1 k satisfies monotonic-time, and

t3[k + 1].write-time > t3[k].write.time, we conclude that monotonic.time(t3) is satisfied.

124



4i!•. , - - ..., •

~Mp4~WSS "WV stMW fivivegjmvriwsl

if firin4mveriwa its satisfted for both tI and t2 then firing.invariant is satisJied
for m g(tl, t2).

Proo

We assume that tl and t2 h-ve no common write times, and that firing.invariant

is satisfied for both t1 and t2. Let t3 - merge(tl,t2). We show firing-invariant(t3) by

induction.

Basis: length(O3) = 1

-e every trace has a data.tuple with index zero, then 03 is the trace with

only an initial data tuple, and twof = tro = 0 by the definition of initial data tuples. So

firing.invariant(t3) is satisfied.

Induction Step: Assume that t3 I k satisfies firing-invariant. Since tl and Q2

satisfy firing-invariant and each element of t3 is also an element of t1 or t2, we know that

no matter which of tl and t2 the k + 1st element of t3 comes from, tw+l > trk+1 . We can

conclude therefore that firing.invariant(t3) is satisfied. 0

Proposition 7 merge is commutative.

merge(fl, t2) = merge(t2, t1)

We assume that tl and t2 have no common write-times. We further assume that

since tl and t2 are traces, they both satisfy the trace invariants monotonic-time and fir-

We show that the meigc function applied to tl and t2 satisfies these conditions and

the length of the result is exactly the same regardless of the order of the parameters.
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Let t3 m verge(tl,t2).

Then length(t3) - length(merge(tl,t2)) = length(t1) + length(t2) - 1.

But, since + is commutative, then

length(tl) + length(t2) - I = length(t2) + length(t1) - 1 = length(merge(t2, tl)).

We know by Proposition 5 that monotonic-time is satisfied for both merge(t1, t2)

and merge(t2,tl). We know by Proposition 6 that firing.invariant is satisfied for both

merge(tl, t2) and merge(t2, tl). Therefore merge is commutative. 0

Proposition 8 merge is associative.

If tI, t2 and t3 each satisfy monotonic-time and firing.invariant, and they have
no common times, then merge(tl, merge(t2, t3)) = merge(merge(tl, t2), t3).

Proof

We assume that tl, t2 and t3 have no common write.times. We further assume

that since tI, t2 and t3 are traces, they all satisfy the conditions monotonic.time and

firing.invariant.

Let t4 = merge(tl, merge(t2, t3)).
Then length(t4) = length(merge(tl, merge(t2, t3))) =

length(tl) + length(merge(t2, t3)) - 1 =
length(tl) + (length(t2) + length(t3) - 1) -1 =
length(tl) + length(t2) + length(t3) - 1 -1 f=
(length(tl) + length(t2) - 1) + length(t3) - 1 =
length(merge(tl, t2)) + length(t3) - 1 =
length(merge(merge(t 1, t2), t3)).

So the lengths of merge(ti, merge(t2, t3)) and merge(merge(tl, t2), t3) are the

same. We know by Proposition 5 that monotonic.time is satisfied for both merge(t2, t3) and

merge(tl, t2). Thus using the same logic, we can conclude that monotonic.time is satisfied

for merge(tl, merge(t2, t3)) and for merge(merge(tl, t2), t3). We know by Proposition 6

that firinginvariant is satisfied for both merge(t2,t3) and merge(tl,t2). Thus using the
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b. Other Function

Ts secion otain defiitioh for other functions used to construct the posibility

fumctios for prototypes.

(1)0

The 8"• function extends trace.tuples by appending incrementaLtrace-tuples

to them. It takes as input a trace.tuple T and an incrementaLtrace.tuple-set S. The output

of the function is a set of tracetuples where the prefix of eawh element in the set is T, and

the remainder of each element is an element of S.

"*'(T: trace.tuple, S: incrementaLtrace.tuple-set)
REPLY (D: trace.tuple.set)

ALL (it: trace-tuple SUCH THAT tt E D
:: SOME(& incrementaLtrace.tuple SUCH THAT d E S

:: tt = append(T, d)))

(2)A

The A function is used to select incrementaltracetuples which have a partic-

ular write-time.

A(t: time, Si: incrementaLtrace.tuple.set)
REPLY S2: incrementaLtrace.tuple.set

ALL (D: incrmenntaLtrace.tuple SUCH THAT D E S2
:: ALL(& datatuple SUCH THAT d e D

:: d.twrte-time = t))
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(8) p

The p function provides the earliest possible time that an operator can read

its input streams based on its output history. If the operator is on a cycle in the graph,

then it must complete every firing to include writing its output streams before it can read

its input streams. If it is not on a cycle, then it does not have to wait for a previous firing

to be complete before it can read its input streams again.

p(T: trace-tuple, o: op-id) REPLY t: time
SOME(s: stream-set SUCH THAT s 9 0(o)

ALL(r: trace SUCH THAT T E T.
WHEN on-.acycle(o) t > -r[length(r) - 1].writedime
OTHERWISE t __ rIlength(r) - 1].readlime

(4) fill

The fill function takes as input an incrementaLtrace-tuple-set from the output

streams of an operator and for each incremental-trace-tuple in the set, it creates an empty

data.tuple for all other streams in the prototype.
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APPENDIX B

EFFECTS OF CONTROL CONSTRAINTS ON
POSSIBILITY FUNCTIONS

This appendix defines the effect of each form of constraint contained in the PSDL

grammar on the possibility function of an operator. The possibility function for an operator

o is a function of the form, A'(I., rt), where I. is the input history of the operator o, and rt

is the last possible time that o could have read its streams for the current firing. The output

of the possibility function is a set of possible incremental-trace.tuples written to the output

streams of o by the current firing of o. Examples of possibility functions can be found in

Chapter IV, Section A.3, Examples 5 and 6.

The main result in this appendix is Lemma 1, the Independent Operator Lemma,

which states that the possibility function of an operator is not dependent on the context in

which it is placed.

Lemma 1 Independent Operator Lemma

Given the same input history and an unlimited number of processors, an operator has
the same possibility function regardleu of whether it is contained in a larger prototype, as
long as the larger prototype does not introduce input to the operator from a feedback loop.

Proof.,

This proof is a structural induction over all of the different control constraints in the

PSDL grammar. First, let us look at the possibility function for an operator o, T.. This

possibility function produces a set of possible incremental trace tuples for every finite prefix

of input vectors written to the operator's input streams.

129



Each of the following sections discusses how each of the control constraints available in

PSDL affects the possibility function for o.

1. Triggers & Input Guards

The *"Iiggered' control constraint defines the conditions which trigger the execution

of o. The two options, "by all" and "by some' identify any input streams listed after them

as data Bow streams or sampled streams respectively, and any time a value is written to one

of those streams,, it can only be removed from the stream by a firing of the operator o for

data flow streams, and a producer operator for sampled streams. Another option which may

appear in a triggering constraint is an input guard. These appear as boolean expressions

that, if satisfied, allow the operator o to fire.

a. "by all"

The "by all reantm.-. trigger appearing in a control constraint limits the execution

of the operator o to fire only when there is a new value on each of the streams in stream.act.

The effect of this on X. is that it limits the read times for which o can produce a set of

non-empty incremental-trace-tuples. Since the output of X. is determined only by the input

history of o, which we have assumed to be the same in any context, this only serves to limit

the possible output histories. These output histories are the same regardless of whether o is

contained in a larger prototype or functions independently.

b. "by some"

A similar argument can be made for the "by some stream.8ed' trigger. The input

sequences processed by o are limited to only those sequences of vectors in which at least one

of the streams listed in etreanteet contains a new value. The effect of this limitation is the

same as in the previous section.
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Input guards in the triggering condition of an operator, o, define which input values

can trigger the execution of o. Their effect is to limit the read times at which the operator

can fire. Since that effect only serves to limit the execution of o, it is the same whether or

not the operator is contained in a larger prototype or not.

2. Period

Operators with a period constraint are declared with a time t. After an initial delay of as

much as t time, the operator is given a window of t amount of time in which to fire. As long

as the operator fires early enough to complete its execution before the end of the period, a

set of possible outputs will be written to its output streams. This set of outputs is produced

non-deterministicaUy because of the flexibility the operator has in starting its execution.

This non-deterministic start time will change the time that the operator reads its input

streams, thereby changing the possible outcome. Since, we are assuming that the number of

processors is unlimited, we conclude that no matter whether the operator is contained in a

larger prototype or not, all choices for read times are possible, thus the possibility function

for the operator will be the same in either case.

3. Finish Within, Minimum Calling Period & Maximum Response
Time

Operators with a finish within, minimum calling period or mazimum response time

constraint are declared with a time, t. The minimum calling period constraint serves to

limit the possible read times of the operator, and the finish within and maximum response

time constraints limit the possible write times of the operator, however these constraints

are not dependent on the context in which the operator is placed as long as the number of
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procuhsors is not limited. Therefore, the possibility function for the operator is the same

whether it is contained in a larger prototype or not.

4. Constraint Options

Com•t int optionw include output guards, ezception. and timer operations. Output

guards can affect the possibility function of an operator, but these are part of the definition

of the operator. Thus, the effect of these output guards on the possibility function for the

operator is the same regardless of whether the operator is contained in a larger prototype.

Exception triggers contained in the implementation of an operator can affect outputs on

streams of type exception, and their triggering is affected only by the inputs provided to

the operator, so the exception outputs resulting from possible inputs to the operator would

be the same regardless of whether the operator is contained in a larger prototype. Timer

operations affect the outputs on timer dependency edges only. These timer operations affect

the state of a timer if some predicate evaluated on the inputs to the operator is satisfied.

Since the inputs to the operator are the same when the operator is contained in a larger

prototype, the resultant timer state change operations will be the same if the operator is

contained in a larger prototype.

Since the control constraints and the output history of an operator can only depend on

the input received from the data streams and timer dependency edges, and we know these

to be the same, putting the operator in the context of a larger prototype can not affect its

possibility function. 13

It is important to note that Lemma I applies equally to operators which are components

of larger operators, or operators which implement some operation in an abstract data type.

From our perspective, there is no difference.

132



APPENDIX C

PROOFS OF THEOREMS

1. 0: Tracms --- FunctionRepresentations IS WVELL-DEFINED
AND A BIJECTION

THEOREM 2:

erof
1. Show 91is single-valued and a total function. Let r be a trace on a stream, and let

01 and10 2 be two fntion60al reprentation3 for rSUCHTHATF1 96 *2

Since 1919 VF'2, 3 a time t E [0, 00) SUCH THAT '@I(t W :0 2(t).

But, then by the definition of #-1 3n :5 miva(length(- 1 (*I1)), length(#$1 (' 2)))

SUCH THAT

0*1 ('I')[n].value 96 #-1 (* 2)[nJ.value or

f9'Q0 1)[nJ.operator 96 $ 1 (1f2)fraJ.operator or

#*1('?1)[nJ1uirite-iiMe 9' *O1 (V2)[nJ.uriteiime or

Thus, *-'(9) y& #$1 Q?2), but we know that 0-2(41) =- 91('2) =r, and

we have a contradiction.

Therefore, 9 is-well defined.

2. Show 0 isonto. Let

M = [O,i 1j) ~[.i,iL,O0

be a mapping in 9.
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Then by definition of 0,

M - #(([-, £, 0, 0], [--I, j, tr,,,twjl,--., [=., o•, tr,, t],..

or t,+÷ = 00.

Therefore, 0 is onto.

3. Show r #s = ¢(r) # 0(s)

Let r and a be two traces on a str-am, where r 9 a.

Then 3n < maz(length(r), length(s)) SUCH THAT

r[n].value 9 s[n].value or r[n].operaior 54 s[n].operator or

r[n].writeJtme .9[nJ.writciime or r[n].readdime # ,ln].read-ime.

If r[n].writietime # .[n.write-time

then 1 < min(r[n].writeiime, s[n].write.lime) SUCH THAT

*(r)(t) # 4s0)(t).

If (r[ne].red• mne # s,].reaktime or r[n].value # [(n].,'alte)

and r[n].write.time = [n].writerime

then 3t = r[jn.writetime = o[n].write-time SUCH THAT

,(,.)(t) 96 f(s)(t).

Therefore, 4(r) 9 *(a), and 9 is one-to-one.

By 1, 2 & 3, # is a Bijection. 0

2. SLICING THEOREM FOR PSDL PROTOTYPES

THEOKEM 3: Slicing Theorem

Let Sp(X) be the slice of a prototype P with respect to a set of stream X. Then

Sp(X) and P have the same prototype behavior on any subset of the streams in Sp(X).
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Let Sp(X) be an arbitrary slice of a prototype P. We show that at any point during

the execution of Sp(X), both P and Sp(X) have the same truncated prototype behavior

over the data streams in Sp(X). From this, we conclude that the prototype behavior over

any subset of the data streams in Sp(X) is the same in both the slice and the prototype.

Using 9, we view each of the trace tuples in BE(sp(x)) I k as a sequence of vectors, each

vector containing a data tuple from each data stream in E(Sp(X)) and do an induction over

the length of the longest sequence.

Induction Hypothesis:

If the length of the longest sequence of vectors in BE(sp(x)) is no more than k, then

Bz(sp(x)) is the same in both P and Sp(X).

Basi: (Sequence of length one)

The semantics of PSDL determine an initial data tuple for each stream. The read

time and write time of this initial data tuple are both 0. If the stream is declared as a

state variable, then the initial data tuple contains a data value specified by the STATE

declaration, and otherwise it contains the undefined data value I. The operator field of the

data tuple contains either the id of the operator containing the state variable declaration

for the stream, if one is declared, or I. Since the state variable declarations are the same in

both P and Sp(X), the B over all of the streams in Sp(X) is the same in both, when the

length of the longest sequence of vectors is one.

Induction Step: (BE(sp(x)) is a sequence of length k + 1)

Equation I shows us that B,(sp(x)) I (k+ 1) is completely determined by BE(sp(x)) I k.
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Bs(sp(x)) I (k + 1)

u ED$ ue((S~ (etu (uA (t, fill (()
T.EBZsp(x))Ik SE(V(Sp(X)))

(1)

Since Bg(s,(x)) I k is the same in the slice and the entire prototype by the induction

hypothesis, BB(5s(x)) I (k + 1) must also be the same in the slice and the entire prototype.

Consider the main subexpression of the right hand side of Equation 1:

Ser(V'(SPx))) (2 (u ( u,< ýA (t, fill (E(P), .F,(TI(.), r)

This construction defines a set of trace tuples of length k + 1 in terms of a trace tuple r

of length k and a set of incremental trace tuples of length one that is derived from T and

the properties of the slice. This set of trace tuples is a subset of BE(sp(x)) I (k + 1). The

E operation is a function, so, providing the trace tuple, T, and the set of incremental trace

tuples are the same in both P and Sp(X), the resultant subset of Bs(s,(x)) I (k + 1) is the

same in both P and Sp(X).

The set of trace tuples, Bg(sp(x)) I k is the projected B of P over the streams in Sp(X), so

any trace tuple, T E Bz(sp(x)) I k is certainly the same in both P and Sp(X), as Sp(X) is

a subgraph of P.

The set of possible incremental trace tuples, D, used in the above construction is constructed

using the following equation:

D E((,x) (= (U U (u A (t, fill (E(P),Y(T(,

D is constructed by looking at every possible subset of the operators in Sp(X), building the

et of possible incremental trace tuples for the output streams of that subset and finding the

union over all subsets. Since the powerset of the the set of operators in Sp(X), P(V(Sp(X))),
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is them ow in both P and Sp(X), then the union over all of the subsets is the same in both

P and Sp(X) provided that the incremental trace tuples produced for each subset are the

same in both.

Pick an arbitrary SC E P(V(Sp(X))). We want to construct the set of possible incremental

trace tuples over the output streams of the operators in S'. To do this, we must look at

each operator, and construct the set of possible incremental trace tuples over their output

streams. Then, we take each of those and combine them using the 6) function. Since an

incremental trace tuple is simply a trace tuple of length one, the function G can be overloaded

to accomplish this task as well. The operator 6) is a commutative function, so as long as the

incremental trace tuples produced by each operator are the same in both P and Sp(X), their

combination using ( is the same in both P and Sp(X). Accordingly, we pick an arbitrary

operator, v. Constructing the set of possible incremental trace tuples for o is accomplished

using the following:

A(T,.)<t(

By Lemma 1, we know that the set of incremental trace tuples produced by o is the same in

both P and Sp(X). Now since we already knew that T is the same in both P and Sp(X),

and we know that E is a function, we conclude that the resultant set of trace tuples is the

same in both P and Sp(X), for each T E BE(sp(x)) I k. Further, we conclude that the union

over all possible trace tuples in Ba(s$(x)) I k is the same in both P and Sp(X). Therefore,

Bj(sp(x)) I (k +1 ) is the same in both P and Sp(X).

Since any finite prototype behavior over the set of streams in the slice is the same in both

P and Sp(X), we conclude that any finite behavior over a subset of the streams in the slice

is the same in both P and Sp(X).

Now, we want to show that any countably infinite prototype behavior is the same in

both P and Sp(X). Assume not. If any countably infinite prototype behavior is not
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the same in both, then there must be a finite prefix which is not the same in both P and

Sp(X). However, according to our induction above, all finite subsequences of BE(sp(x)) are

the same in both, thus we have a contradiction. Therefore, any countably infinite prototype

behavior over a subset of the streams in Sp(X) is the same in both P and Sp(X). 0

The construction shown in Equation 1 defines the behavior of a prototype in PSDL. Since

PSDL is non-deterministic and can be executed in parallel, it is necessary for us to consider

all possible execution circumstances. What the construction really does is lengthen the

prototypes behavior one incrementaLtrace.tuple at a time. This incrementaLtrace-tuple

added to the end of the behavior at some time t is the output of every operator in the

prototype that is writing to its output streams at precisely time t. This can be every

operator in the prototype or only one operator in the prototype.
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APPENDIX D

PSDL Grammar

The following is the grammar listing for the Prototyping System Description Language

(PSDL) as of 14 November 1991. This version corresponds to the implementation of our

merSing tool. Optional items are enclosed in [ square brackets ]. Items which may appear zero

or more times appear in { braces ). Terminal symbols appear in BOLDFACE. Groupings

appear in ( parentheses).

pOW
= {component)

component
= dlataype
I operator

data-type
= type id type.spec type-impl

type-spec
= specification [generic type.decl] [type-decl]

{operator id operator-spec}
[functionality] end

operator
= operator id operator-spec operator.impl

operator.spec
= specification {interface) [functionality] end

interface
= attribute [reqmts-trace]
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attribute
= generic type-decl a
input type.decl
output type.dedl
states typedecl initially initiaLexpressioniist
exceptions id.ist
Smaximum execution time time

typ.de-d
= idjlist : type-iame {, id-list : type-name}

typ•ename
= id
I id [ type.decl ]

idiist
= id {, id)

reqmts trac -

= required by id.list

functionality
= [keywords) . formaLdesc] [formaLdesc]

keywords
= keywords id.list

informaLdesc
= description { text)

formaLdesc
= axioms ( text)

type~impI
= implementation ada id end
I implementation type-name {operator id operator.impl) end

operator-imp,
= implementation ada id end
I implementation psdlimpl end

psdLimpl

= datafow.diagram [streams] [timers] [controLconstraintsJ [informaLdesc]

datalow-diagram
= graph {vertex) {edge)
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W v.W&M opMW [:tMe
-time is the maximum execution time

edge id [: time] opid -. op.id
-time is the latency

op..d =id [( (id-list] I [idlist] )

= data stream type..decl

timers
=timer idlist

cosAoconstraints
= control constraints constraint {constraint)

constraint
= operator op-id
ftriggered [trigge] [if expression] [reqmtstraceD
Wperod time [reqmts.trace]j
[finish within time [ems.rcj

[minimumcalling period time [reqmts..tracejJ
[maximumresponse time time [reqmts..tracej]

{constraiflt..ptions)

constraint-options
= output idlist if expression [reqmts-trace]
I exception id [if expression] [reqmts..traceJ
I timer-op id rif exresion] [reqmta-trace]

= by all idlist
by some id-list

timet..p
= reset timer
start timer
stop timer

= ~~~~~initial-expression, ntaepeuo
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-true

Iintqsr-literal
stAngliteral

Iid
Itpe-name . id [( initi .epresuionlist )
I initiaxpuo)

Iiniti apesjn binary-.op initiaLexpression
Iunary.op initiaepeuo

bbinary..op
= and

or

xor

1+

mod
irem

unry-op
= not I abs i- I +

time
= integeijiteral unit

unit
= microsec
Ima
Isec

mni
Ihour.
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-~ý 4 -r *

-true

Itime Ireauiteral

Iid.
Itype-name. id [((exprouion..Iist )

I iiti~exremonbinary-op initiaepeio
I mry-op mnitiaLexrsw

id
-letter {ph.n erc)

=integer-literal. itegeriliteral

-digit {digit}

string.Itera1
"="{char}"

Chur
=any printable character except)

digit
=0.. 9

letter

A.. Z

=letter

Idigit
text

= char)
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APPENDIX E

Ada Implementation Code

On the following pages are contained the implementation code for the current version
of the Change-Merge Tool. This tool used the PSDL Abstract Data Type developed n Ada
by other members of the CAPS Research Team, as well as the PSDL Expander developed
and implemented by Dr. Berzins. The code for these systems are not included in this
dissertation.

The code contained in this appendix is broken up into different files. Each section of
this appendix will contain a different file. All code was implemented in Ada and compiled
using the Sun Ada Compiler Version 1.0.
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1. merge-main.pkg

-- COMPONENT NAME : PACKAGE MERGE.MAIN.PKG ( merge.main.pkg.s .a )
-- USAGE : Used to perform all of the housekeeping and interface

between the CAPS interface and the change-merge system
developed by Dave Dampier.

-- INPUT/OUTPUT
-- AUTHOR Jim Brockett
-- DATE OF CREATION 28 NOVEMBER 1993

-- LANGUAGE USED Ada

-- COMPILER USED Sun Ada 1.0
-- PURPOSE Provides three functions used by the Merge Interface;
-- merge, find-Base, and commitmerge.

-- FILES USED

-- NOTES : This is the module to which the TAE interface code for
the CAPS merge tool connects. Calls are made from the

-- merge interface to this package. It is TBD whether or
-- not the actual merge software is integrated into this
-- package or put separately elsewhere. Either way will

-- work. The purpose of this packaage is integration
-- specification.

-- MODIFICATIONS

-- DATE : 19 APRIL 1994
-- AUTHOR : Dave Dampier
-- PURPOSE : Completed Integration with ChangejMergePkg.

-- AFFECTED MODULES : All
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with uniz-prcs; use umiz..prcs;
with uniz..dirs; use luniiz.dirs;
with tezt-io; use text.io;
with &-strings; use &-strings;
with psdl..program-pkg; use psdl..prograa..pkg;
with psdl..io; use psdl..io;
with ezpander..pkg; use expander..pkg;
with change..merge..pkg; use change..merge-pkg;

package merge-main is

procedure serge CUASE-VERSION.
VERSION-.A
VERSION..D in a..strizzg;
RESULT :in out &-.string;
CONFLICT in out boolean);

procedure find-Base (VERSION-..A
VERSION-B : in a-strinig;
BASEVERSION :in out a~strizag;
ERROR : in out boolean);

procedure comuit-merge (BASE-V'ERSION,
VERSION-A.
VERSION..) : in &-.strinag;
RESULT : in out a~string);

end serge-aain;
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A7

package body mg.a in i

prototype-.path... rror: exception;

procedure syste...call(couaand : in string) is
procedure systein..C(c ominand : address);
pragma, INTERFACE(C. system-C);
pragma. INTERFACENAME(syst mC. %..system");
temp : constant STRING :*comuazdkASCII.NUL;

error: integer;
begin

system.C(TEDIP ADDRESS);
end systea-call;
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-- Local function to extract the name of the prototype from the
-- version string. R~aises PROTOTYPE_.PATH...ER1ROR if an &-.string without
-- the substring "/.caps/" is received as P.

function naa..o-tfprototype(P a-.string) return a-.string is

pnamo string(l. .P.len); -- to hold prototype nlan..

indezi : integer :-P.len; -- to iterate through P.
indez2 :integer :*1;
slash..not found :boolean -true;

begin
for i in 1..P.len loop
pname(i) :- ascii.nul;

end loop;
for i in 1._2 loop
while slash..not..found loop

indexi :- indexi - 1;
if indoxi < 1
then raise prototype..path...rror;

end if;
if P.s(indezl) 'I

then
slamh..not..found :- false;

end if;
end loop;
slash-not-found :- true;

end loop;
indeui :- indexi + 1;
while slash..notj..ound loop
it P.s(indexl)-'I
then

slash-.not-.found :- false;
oleo
pname(indoz2) :- P.s(indexl);
indexi :* doxl + 1;
index2 :index2 + 1;

end if;
end loop;
return truncate(to..a(pname), index2);

end nane..of-.prototype;
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-- Procedure merge reads in three prototypes and change-merges them,
-- returning a file name holding the resultant prototype from the
-- change-merge.

procedure merge (BASE-VERSION,

VERSIONA,
VERSIONB : in a-string;
RESULT : in out astring;
CONFLICT : in out boolean) is

PROTOTYPENAME a-string;
FILE-STRING a_string;
BASEFILE file.type; -- Used to hold expanded file.
AFILE : file-type; -- " Is

BFILE f ile-type; -- " so

MERGEFILE file.type; -- " "of

BASE pedl-progran; -- Used to hold base program.
OPA : psdl.progran; -- Used to hold first modification.

OPB : psdl.progran; -- Used to hold second modification.
MERGE : psdl-progran; -- Used to hold merged program.
TEMP : status-code;

begin

-- reads in Base prototype and puts in ADT.

put-line ("change-merging prototypes");
put-line("reading base version");
PROTOTYPENAME :- name-of-prototype(BASEVERSION);

system.call ("merge. script -p "&BASEVERSION. sk" I%
PROTOTYPENAME. sA"> "k"/tmp/temp-base.file. psdl");

-- builds single file input!
open(BASEFILE, injfile, "/tAmp/temp-base.file.psdl");

assign (BASE, eupty-psdl-program);
get (BASEFILEBASE);
close (BASEFILE);

systemncall ("rm /tmp/teamp.base-.file.psdl");
expand(BASE) ;
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-- reads iz first modified version of prototype and puts in ADT.
put..line(Q'reading lot modified version");
system..call ("merge. script -p "*&VESION-.A. sk Ilk

PROTOTYPE-.NAME .sk"> &'V /tap/temp-.a-.f ile. p
-- builds single file input!

open(APILE, inj.ile, I"/tmp/temp-.a..f ii..psdlII);
assign (OPA,eapty..psd.lprogram);
get(AFILEOGPA);
close(AFILE);
systeacall ("rm /tmp/temp.a..f ile .psdi");
expand(OPA);
-- reads in second modified version of prototype and puts in ADT.
put-.line(Ilreading 2nd modified version');
system-.call(I'merge.script -p "kVERSION..B.sk" Ilk

PRCOTY01PE-.NAME . sk> "&"/tzp/temp-.b-.file psdl"I);
-- builds single file input!

open(DFILE, inj.ile, II/tmp/temp..bjile .psdlII);
assign (OPB,empty..psdl..program);
get(BFILEOPB);
closo(DFILE);
system-.call(Clrm /tmp/temp-.b..file .psdl"I);

expand(OPB);
-- puts result of performing the merge into the directory result.
change-.merge(BASE, OPA, OPB, KERGE, CONFLICT);
temp :- mkdir(result.s);
split rsl,PROTOTYPENAIIEMERGE);

exception
when use-error II>

put..line (standard..error,
"e1rror: can't create output file. permission denied.");

when syntax., rror II>
put-line (atandard-error,

##parsing aborted due to syntax error.");
when semantic-error II>

put-.line (standard.,error,
itsemantic error, parsing aborted.");

when expander..pkg.no..root II>
put-.line (atandard-o.rror,

ofsemantic error - no top level operator, expansion aborted.");
pu..line (stazidard..error,
ft check for recursive use of the prototype name in an expansion."');
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s apku.ltiple..root i =>
lut.llae(steadard..error,

" semantic error - more than one top level operator,
expansion aborted.");

put.line (standard-error,
" check for operators that are not used or");

put-line (standard-error,
" add an extra top-level operator that decomposes");

put-.line (standard.error,
" into the current set of top-level components");

put.line(standardoerror,
" if your design has several top-level components.");

-- when undefined-component ->

-- put._line(standard.error,
-- " semantic error - an operator without a PSDL definition has

-- been used.");
when prototype.path.error =>

put-line("Ifrom merge.main-pkg.merge");

put-.line (standard.error,
"path to merge inputs provided by top-level interface was

incorrect.");
when constraint-error =>

put-line (standard-error,
" constraint-error - merger not working properly.");

when nuaeric-error =>
put-line (standardoerror,

" numeric-error - merger not working properly.");

when prograamerror ->

put-line (standard.error,
" program-error - merger not working properly.");

when storage-error a>

put-line (standard.error,
" storage-error - merger not working properly.");

when tanking.error ->

put-line(standard.error,
" tasking-error - merger not working properly.");

when others ->

put-line (standardoerror,
" unexpected exception - merger not working properly.");

end merge;

151



procedure findBase (VERSIONA,
VERSIONB : in a-string;
BASE-VERSION : in out a-string;
ERROR in out boolean) is

begin
text-io.put-line("this procedure is not yet implemented");
BASE-VERSION := to.a("You must select a base version manually!");

ERROR :- true;
end find-Base;

procedure commit-merge (BASE-VERSION,
VERSION-A.
VERSIONB : in a.string;
RESULT : in out a-string) is

in-result a-string :a copy(RESULT);
temp-string : a-string;
temp : status-code;

function version-num(x : a-string) return a-string is

vnuz : astring;
index : integer :-x.len;

begin
while z.s(indez) I. 'I' loop

index :- index - 1;

end loop;
vnuu :- toa(x.s(index+1..x.len));

return vnum;
end versionnum;

begin
temp.string :- (in-result & to-a("-") & version-nua(VERSIONA)

& toa(".") & version-nuz(BASEVERSION)
& toa("_") k version-nua(VERSIONB));

temp :a mkdir(tep.-string.s);
systen-call("nv " & in.result.s & "/*.pudl " & temp-string.s);

temp :- rmdir(in-result.s);
RESULT :- copy(temp-string);

end commitmerge;
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2. chAnge.._merge..pkg

-- COMPONENET NAME PACKAGE CHANGE-MERGE-.PKG ( chazige-.merge..pkg-..sa)
-- USAGE
-- INPUT/OUTPUT BASE, A, B: in psdl-program

-- MERGE: in out psdL-prograa
-- CONFLICT: out boolean

-- AUTHOR :Dave Dampier
-- DATE OF CREATION 19 April 1994
-- LANGUAGE USED Ada
-- COMPILER USED :Sun Ada 1.0
-- PURPOSE :Contains the procedure which performs the change-merge

-- operation on PSDL programs.
-- FILES USED :psdl..type-.s .a, psdl..ct.s .a, psdl-.prog-...sa

-- ~~~psdl..graph-..5.a, prototype-.dependency4raph..pkg..s. a,
-- ~~~~proto..spec..aerge-.pkg-.s .a, proto-.impl-.merge..pkg..s .a,

-- ezp..s.a.
-- NOTES

with a-.strings; use a-.strings;
with psd-component-.pkg; use psdl-.couponent-.pkg;
with psdl-.concrete..type..pkg; use psdL-concrete..type..pkg;
with psdl..program..pkg; use psdl..program..pkg;
with psdl..graph..pkg; use psdi-graph..pkg;
with prototype-.dependency-.graph..pkg; use prototype-dependency..graph-.pkg;
with proto...sp c..merge..pkg; use proto-.spec-..erge..pkg;
with proto..impl..merge..pkg; use proto-iupl-n.erge..pkg;
with tezt..io; use text..io;
with expression..pkg; use expression..pkg;

package chazige..aerge..pkg is

153



-- This function performs the change-merge operation on PSDL prototypes.
-- Given three prototypes, BASE, A and B, the function creates --

-- prototype dependency graphs for the three prototypes, and using --

-- prototype slicing, it identifies the preserved part of the base --

-- in all three versions, and the parts of the changed versions which --

-- are different from the base. It then combines the three pieces into --

-- a merged graph. If the graph correctly represents the semantic merge --

-- of the three versions, and there are no conflicts, then the merged --

-- prototype is reconstructed from the merged graph. In the case of a --

-- conflict, the exception "merge-conflict" is raised. --

procedure change-merge(BASE, A, B: in psdl-prograa;

MERGE: in out psdl.program;

CONFLICT: out boolean);

procedure build.prototype(P: in out psdl.component;

G: in prototype-dependencygraph);

end changenmerge.pkg;
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package, body change..merge-pig in

-- This function perfoarms the change-merge operation on PSDL prototypes.
-- Given three prototypes, BASE, A and D, the function creates
-- prototype dependency graphs for the three prototypes, and using
-- prototype slicing, it identifies the preserved part of the base
-- in all three versions, and the parts of the changed versions which
-- are different from the base. It then combines the three pieces into a
-- merged graph. If the graph correctly represents the semantic merge
-- of the three versions, and there are no conflicts, then the merged
-- prototype is reconstructed from the merged graph.

procedure change..merge(BASE, A, B: in psdl-progran;
MERGE: in out psdl-.prograa;
CONFLICT: out boolean) is

BASENOLD, ANOLD, BROLD: psd..program :- empty..psdL-progran;
BASETYPE, ATYPE, BTYPE: psdl-program :w empty-.padL-progran;
ATONXC-COMP: atomic-.operator;
DASECOMP, ACOMP, BCOMP, MDRGECOMP: composite-.operator;
GBASE, GA, GB, GM, PP. APA, APE: prototype..dependency..graph;
BASESTREAMS, ASTREAMS, BSTREAMS, MURGESTREAMS: type..declaration;
MERGESTATES: type-.declaration;
M ERGCEINIT: init..map :- empty-.init-.map;
MERGEEXCEPTIONS, M ERG EKEYWORDS: id..set;
MERGEMET: millisec :- 0;
MERGE_.INF...DESC, MERGE..AX: text;
BASETRIG, ATR2IG, BTRIG, MERGETRIG: trigger-.map :- empty..trigger-.map;
BASEEG, AEG, BEG, MERGEEG: oxec...gard-s.ap :-empty..exoc-.guard..map;
BASEOG, AOG, BOG, MERGEOG: out..guard-.map :empty..out..guard-..ap;

BASEET, AET, BET, ?ERGEET: excep-.trigger..map :- empty..ezcep...trigger..map;
BASETO, ATO, BTO, MERGETO: timer-op-map :- empty..timer-.op-.map;
BASEPER, APER, BPER, MERGEPER: timing-.map :- empty-.timing-map;
BASEFU, AFU, BFW, MERGEFW: timing..map :- empty-.timing-..ap;
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3ASZDCP, ANCP, BCP, lGMEMCP: tizinguap - empty.timing.sap;
BASEKRT, AMRT, BlURT, MEGEDRT: timing-map :-eptytiming.-map;
BAEDESC, ADESC, BDESC, ERGEDESC: text;
KMERD: pedl.id;
BASETIMERS, ATIIERS, BTI'HES, IMGETIMERS, V: id.set;
tempexpression: expression;

tempoutid: output-id;
tempexid: excepid;

conflict.free.a, conflict.freeb: boolean := true;

begin

conflict :- false;

-- This section of code is used to extract the psdl components from each
-- of the three programs. It assigns the parent composite operator to its
-- own component variable, and it assigns the atonic operators to holding
-- components, so they can be retrieved later.

---------------- eee-- .. . . . . . . . . .

-- BASE

for id:psdl-id,c :psdl-component in psdl-progranmýap.pkg. scan(BASE) loop
if componentmcategory(c) - psdl.type

then

bind(idc.BASETYPE);
else

if component.•granularity(c) = composite
then

BASECOMP :- c;
else

bind(id, c, BASEHOLD);
end if;

end if;
end loop;
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-A

for id:psdl..id~c:psdL-component in psdl-.prograa..map..pkg. scanCA) loop
if component-.category (c) = psd-type
then
bind(id~cATYPE);

else
if couponent..grenularity(c) *composite

then

ACOMP :- c;

else
bind(id, c, ANOLD);

end if;
end if;

end loop;

---- - - - - - -- - - - - -

for id :psdl-id,c :psdl..component in pxdl-.prograa..map-.pkg. scan (B) loop
if component..category(c) - psdl.type
then

bind(id~c,DTYPE);
else

if component..granularity(c) -composite
then

DCOHP :0 C;

else
bind(id, c, SHOWD);

end if;
end if;

end loop;
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-- -- -- -- - -- -- -- - -- -- -- -- - -- -- -- - -- -- -- -- - -- -- --p

-- Create the Merged Specification

Nonere the states

merge..states (MERESTATES states (DSECOMP) ,states (ACOMP) ,states (BCOMP),

NERGEINIT, get..init..uap(BASECOMP), get-.init..uap(ACOMP),

---------------------------------

-- Merge the Exceptions
--------------------------------

assign(MEREEXCEPTIOS aerge~id..sets(exceptions(BASECOMP),
exceptions(ACOHP), exceptions(BCOMP)));

-------------------------------

-- Merge the Keywords

assign(NERGEKEYWRDS, merge..id..sets (keywords (DASECOMP),
keywords (ACOMP), keywords (BCOMP)));

-- Merge the In~formal Description

MMERG..INF-.DESC := m 3rge..text (it ozual..descript ion (BASECOMP),
inforual-.descript ion (ACOMP),
inforual-.description(BCOMP));

-- Merge the Formal Description

XWE-.AX :- nerge-text (muons (BASECOMP),
axious (ACOMP) ,
axions(iCOMP));
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7-7

-- - -- - - - - - -- - - -- - -- - -

-- Merge the Maximum Execut ion Times

NERGEMET :- merge-met (specif ied..maximum..execution..time (BASECOMP),
specified-s.axiauz..execution..time (ACOMP),
specified-uaximua..execution..tim.(BCOMP));

-- Merge the Implementation

-- Extract the prototype dependency
-- graphs frbm the padi components.

assign(GBASE. buil&.PDG(DASECOMP));---

assign(GBAS, build.PDG(BACOHP)); )
assign(GB, build-.PDG(DCOMP));

-- Create the Preserved Part

assign(PP, preserved-.part(GDASE, GA, GB));

-- Create the Affected Parts of each
-- modification graph.

-- put..line("'Affected Part: A");
assign(APA, affected..part(GA, GEASE)); -- First Modification
-- put-line ("Affected Part: B");
assign(APB, affected-.part(GB, GBASE)); -- Second Modification
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-- Create the Merged Graph using the
Preserved Part of the Base and

-- the Affected Parts of both
-- modifications.

assign(GM, graph-morge(PP, APA. APB));

-- Merge the streams

assign(BASESTREAMS, streams (BASECOMP));
assign(ASTEAMS streams(ACOMP));
assign(BSTREAMS, streans(BCOMP));
assin(MERGESTREAMS, mergestream (BASESTREAMS, ASTREAMS, BSTREAMS));

No Merge the timers

assign(BASETIMER, timers (BASECOMP));
ausign(ATIMRS, timers(ACOMP));
assip(BTIMR, timers (BCOMP));
assign(MERGEINERS, merge.timers(BASETIMERS, ATIMURS, BTIMERS));

-- Merge the triggers

for id: psdl.id in id-set.pkg.scan(vertics(GBASE)) loop
if not eq(id, ErT)

then
bind(id, get.trigger(id, BASECOMP), BASETRIG);

end if;
end loop;
for id: psdl-id in id-set.pkg.scan(vertices(GA)) loop

if not eq(id, EXT)
then

bind(id, get.trigger(id, ACOMP), ATRIG);
end if;

end loop;
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for I4: P.41..1d in i&.s"t.pkg. man (vertices (09)) loop
it aot .qid, UXT)

then
bind(id. get..triggr(id, BCaMP), ITRIG);

end if ;
end loop;
assipn(MERGETRIG, aerge-trigger-maps (vertices (GM) ,

BASETRIG. ATRIG, STRIG));

--- ----------------------------

-- Merge the execution guards
---------------------------------

for id: pedl-id in id..set..pkg.scan(vertics(GBASE)) loop
it not eq(id, MET)
then

bind(id, execution...gard(id, BASECOMP), BASEEG);
end if;

end loop;
for id: padl-id in id-.set..pkg.scan(vertices(GA)) loop

if not eq(id, EUT)
then
bind(id, execution_.gard(id, ACOMP), AEG);

end it;
end loop;
for id: padl..id in id-.set-ftk.scan(vertices(GB)) loop
if not eq(id, UXT)
then

bind(id, oxecution...gazd(id, BCOMP). BEG);
end if;

end loop;
assign (MEREEG, aerge..ezec-guard-.iapu (vertices %GM).

BASEEG. AEG, BEG));
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-- Merge the output guards

for e: edge in edge-set-.pkg.scan(edges(GBASE)) loop
assign(teupezpression~output-.guard(e. .,e. utreaa..naae ,BASECOMP));
if not(tempezpresuion a true...exresuion)
then

tespoutid.op := copy(e.x);
tempout id. atream :- copy C. stream-.naae);
bind(tempoutid, teupexpresuion, BASEOG);

end if;
end loop;
for e: edge in edge-set-pkg.scan(edges(GA)) loop

asauig(teupexpression,output..guard(e.x,e. streau..naae,ACOMP));
if not (teupexpression - tru1e-.expreussion)

then
tempoutid.op :- copy(e.x);
teppoutid.utreaa :- copy(e.streaa..name);
bind(tempoutid, teupexpression, AOG);

end if;
end loop;
for e: edge in edge-.set..pkg.scan(edges(GB)) loop

assign(teupexpression,output...gard(e.xze. strema..naae,BCOMP));
if not (teupexpression - true-.expression)

then
tempoutid.op :- copy(e.x);
teupoutid.stream :- copy(e.streaa..nae);
bind(teapoutid, teupexpression, BOG);

end if;
end loop;
assign(NEREOG, serge..output-.guard-..aps (BASEOG ,AOG ,BOG));

-- Merge the exception triggers
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for id: pudl..id in id-s.et-.pkg.scan(vertices(GBASE)) loop
it not eq(id, EXT)
then
for e: pudl-.id in id..set.pk~g.scan(exceptions(EASECOMP)) loop

assign(teupexpression, exception-.trigger(id,eBASECOMP));
if not *q(teapexpression, false-.expression)
then

tempexid.op := copy(id);
teupexid.excep := copy(s);
bind (tempexid, teuapexpression, BASEET);

end if;
end loop;

end if;
end loop;
f or id: psdl..id in id-s.et-.pkg.scan(vertices(GA)) loop

if not eq(id, EXT)
then
f or e: pudl-id in id-3et..pkg.scan(exceptionsCACOMP)) loop

assign~teupezpression, exception-.trigger(id, e,ACOMP));
if not eq(tespexpression, false-.expression)
then
teupexid.op :- copy~id);
tempexid~excep :- copy(s);
bind(teupexid, teuapexpression, Ar1T);

end if;
end loop;

end if;
end loop;
for id: psdl-id in id..set-.pkg.scan(vertices(GB)) loop
if not eq(id, EXT)
then

for e: padl-id in id-.set-.pkg.scan(exceptions(BCOMP)) loop

assign(tei~pexprenision, exception.~trigger(id, e, BCOMP));
if not eq(tempexpression. false-.ezpression)
then

teupexid.op, :m copy(id);
teupexid.excep :- copy(s);
bind(tempexid, teupexpression, BET);

end if;

end loop;
end if;

end loop;
assign (NERGEET, (uerge-excep..trigger-aaps(BASEET, AET, BET));
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-- Merge the timer operations

for id: psdl.id in id-set-pkg.scan(vertices(GBASE)) loop
if not eq(id, EXT)

then
bind(id, timer.operations(id, BASECOMP), BASETO);

end if;
end loop;
for id: psdl-id in id-set-pkg.scan(vertices(GA)) loop

it not eq(id, EXr)
then

bind(id, timer.operations(id, ACOMP), ATO);

end if;
end loop;
for id: psdl-id in id-set-pkg.scan(vertices(GB)) loop

if not eq(id, Err)
then

bind(id, timer-operations(id, BCOMP), BTO);

end if;
end loop;
assign(MERGETO, uerge.timer.op-maps(vertices(GM), BASETO, ATO, BTO));

-- Merge the periods

for id: psdl.id in id-set-pkg.scan(vertices(GBASE)) loop
if not eq(id, EXT)
then

bind(id, period(id, BASECOMP), BASEPER);

end if;

and loop;
for id: psdl.id in id-set-pkg.scan(vertices(GA)) loop

if not eq(id, Err)
then

bind(id, period(id, ACOMP), APER);

end if;
end loop;
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wo' --

-T -- A

7to: id: pedl.id in id..set...p.scan(verticos(G5)) loop
it aot .q(id, UXT)

then
biMd(id, period(id, DCOMP), BPER);

end if;
end loop;
assign(MERGEPFR, aerge..period(BASEPER, APER, BPER));

-- Merge the finish-..ithins

for id: padl-id in id..set..pkg. scan(vertices (GDASE)) loop
if not eq(id, EXT)

then
bind(id. finish..vithin(id, BASECOMP), DASEFW);

end if;
end loop;
for id: psdl-id in id..set-pkg.scan(vartices(GA)) loop

it not eq(id, UXT)
then
bind(id, finish,.vithin(id, ACOMP), AFW);

end if;
end loop;
for id: psdl-id in id-.set..pkg.scan(verticesCGB)) loop

if not eq(id, UXT)
then
bind(id. finish-w.ithin(id, DCOIIP), DFW);

end if;
end loop;
assign(MEREFV * merge..fv.or-..rt (BASEPH, ANW, DFW));

-- Merge the sax response times

for id: psdl..id in id..uet..pkg.scan(vertices(GBASE)) loop
if not eq(id, UXT)
then
bind(id, maximu...response-.tiue(id, BASECOMP), BASEMRT);

end if;

end loop;
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for id: padl..id in id..aet..pkg.scan(vortices(GA)) loop
if not eq(id, EXT)

then
bind(id, uazimuau..respons...tim.(id, ACOMP), AMRT);

end if;
end loop;
for id: padl-.id in i&..set..pkg.scan(vertices(GB)) loop

if not eq(id, EXT)
then

bind(id, maaimuua.response..tiue~id, BCOMP), EMRT);
end if;

and loop;
aasign (HERGEMRT. serge..fv.or..urt BASEMRtT. ANRT, BDRT));

-- Merge the minimum calling periods

f or id: psdl..id in id..set..pkg.scan(vertices(GDASE)) loop
if not eq(id, EXT)

then
bind(id, uinimum-.calling..period~id, BASECOMP), BASEMCP);

end if;
end loop;
for id: padl..id in id-set..pkg.scan(vertices(GA)) loop

if not eq(id, EXT)
then
bind~id, minimum-.calling..period~id, ACOMP), AMCP);

end if;

end loop;
f or id: pudl-id in id-.set-.pkg.ucan(verticeu(GB)) loop
if not eq(id, UXT)
then

bind(id, minimuu..calling-period(id, BCOMP), BMCP);
end if;

end loop;
assign(MERGEKCP, serge..Ein..call-per(DASEKCP, AMCP, DNCP));
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"inRzg tbe implementation descriptions

BASEDESC :- implem~ntation-.descript ion (BASECOMP);
ADESC : implem~ntation-.description(ACONP);
BDESC : implementation-.description(BCOKP);
MERGEDESC :- merge..impl~mentation..description (BASEDESC, ADESC, BDESC);

-- Construct the merged program.

MCERGEID : - copy (nano(BASECOK4P));
NM RECOHP -make..composite-.operator (MERGEID,

keywords -> MERGEKEY WORDS,
informal..descript ion -> H ME-G.INF..DESC,
axioms >HMEROAX,

state -> ERGESTATES.
initialization-.map -> MEM EINIT,
exceptions -> NEMGEEXCEPMIDNS,
specifiedmset -> M MGDIET,
streams a> ERGESTREAMS,
timers u> MERETINERS,

trigger >MERGETRIG,

ezec-guard ->MERGEEG,

out-4uard u>MERGEOG,

excep..trigger -> MERGEET,
timer-op -> MERGETO,
per .)MERGEPER,

1w a>MMREFW,

mcp a> ERGEMCP.
mrt *>MEREMRT.

impl-,desc -> KMEEDESC);
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-- Compare the the Merged Graph with the Graph of each modification by
-- comparing the slices of each with respect to their affected parts.
-- It the slices are the same, then the merged graph is correct and the
-- program can be rebuilt. Otherwise, there is a conflict that must be
-- resolved.

build-.prototype(MERGECOMP, GM);
conflict-.free..a :a coupare-.graphx(GM, GA. APA);

conflict-.free..b := compare-.graphe(GM, GB, APB);
if not conflict-.free-.a

then
put-.lineQ'Conflict found in Version-.A'9;
conflict :- true;

end if;
if not conflict..free-.b

then
put-.line("Conflict found in Version-B.");
conflict :- true;

end if;

-- Return the Merged Progera.

bind (NERGEID ,HERGECOMP ,MERGE);

assign(V, vertices(PP));
for id: padl-id in id...set-.pkg.scan(V) loop

bind(id,fetch(BASEHOLD,id) ,MURGE);
end loop;
assign(V, verticex(APA));
for id: psd~l-.id in id-.set-.pkg.scan(V) loop

if not ueuber~id,MERGE)
then

bind(id~fetch(AHOLD,id) ,MEGE);
end if;

end loop;
ausxig(V, vertices(APB));
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ter i4: Pw.41.1 I& id.set..pg..C~A(V loop
it met membor(id.IRGE)

then
bind (id, etch (BHOLD id) ,MERGE);

end it;
end loop;

end change-merge;

-- This procedure is used to build the merged prototype when the change-
-- merge operation ia successful.

procedure build-.prototype (P: in out psdl-component;
G: in prototype..dependency..graph) is

A: psdl-.graph;

begin
assign(A, psdl..graph(G));
remove..vertex(EXT, A);
auet..graph(A,P);

ead build-.prototype;

end chang...morge..pk~g;
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3. proto..specanerge..pkg

-- COMPONENT NAME :PACKAGE PROTO-.SPEC-.MERGE..PKG(proto...pec-s.urge..pkg..s .a)

-- AUTHOR :Dave Dampier
-- DATE OF CREATION: 19 April 1994
-- LANGUAGE USED Ada
-- COMPILER USED :Sun Ada 1.0
-- PURPOSE :This package provides specifications for the functions

-- used to perform chan~ge-merges on padi operator
-- uspecif icat ions..

-- FILES USED :psdl..ct-a..a, psdl-ct-.b.a, psdl-.type..s.a, psd.ltype..b.a,
-- .~~~et_.&~, set-.b.a, uap....a, map-.b.a, exp-s..a, ezp-.b.a.

with system;
with generic..uap..pkg;
with generic..aet..pkg;
with TEXT..IO; use TEX[T-.IO;
with a...tringu;- use a-..strings;
with psdl..concrete..type..pkg; use padl-concrate-.type-.pkg;
with padl-.couponent..pkg; use psdl-couponent..pkg;
with ozpression..pkg; use, express ion-.pkg;

package proto0-.spec...erge-.pkg is

function M ERG E-.SEQUENCES(BASE, A, B: type-.declaration)
return type-declarat ion;

procedure MHERG E-.STATES (MERGE: in out type-.declarat ion;
BASE, A, B: in type~declaration;
MERGEINIT: in out init..aap;
BASEINIT, AINIT, DINIT: in init...ap);

function MERGE-.MET(DASE, A. B: millisec) return millisec;

function 3MERGEID.SETS (BASE. A, B: id-uet) return id-s.et;

function IME...TEXT(BASE, A, B: text) return text;

end proto-spec..merge..pkg;
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prckm beft Prete..specaeepki

fuctio. mege,.sequenceu (BASE A. B: type-doclmrt ion)
return typo-.declaration is

MEGE : type-.declaration;
TOP : constant psdl..id :- to-.a('TOP");

begin
axxign(HERGE. empty-type..declaration);
if equal(BASE, A)

then if *qual(BASE, B)
then assign(KERGE, BASE);
else assign(NERGE. B);

end it;
else if equal(BASE. B)

then ausign(HERGE. A);
else it equal(A, B)

then assignCKERGE. A);
else bind(TOP, nulltype, MERGE);

end if;
end it;

end if;
return MERGE;

end merge sequences;

function merge..types(t-.base, t..a, t-.b :type-.name) return type-.name is

begin
if equal(t..baue. t-a)

then
if equal (t..base. t-b)

then
return(t..base);

else
return(t.b);

end if;
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*ISO
if equal(t-base, t-.b)

then
return(t-a);

else
if equal(t-.a, t..b)

then
return(t..a);

else
return null-.type;

end if;
end if;

end if;
end mergo-types;

procedure merge-.states(MERGE: in out type-declaration;
BASE, A, B: in type declaration;
HERGEINIT: in out init..uap;
BASEINIT, AINIT, BINIT: in init-m.ap) is

init-value : expression;
ban*etype, a-.type, b-.type : type..naue;

begin
asuign(init..value, eapty-.expression);
assign (MERGE, euipty-type-.declaration);
for id: psdl~id, t: type-nano in type-.declaration..pkg. scanCEASE) loop

if easber~id, A) and member~id, B)
then

a-type :*type..declaration.pk~g.:fetch(A~id);

b..type : type-.declaration..pkg.:fetch(B, id);
bind(id, merge-.types(t, a-type, b..type), MERGE);
assign(init-.value, init..aap..pkg fetch (BASEINIT, id));
if eq~init..value ,init-..ap-.pkg fetch (AINIT,id))

then
if eq(init..value~init..uap..pkg.fetch(BINIT, id))

then
bind(id, init. value ,MERGEINIT);

else
bind (id, init..uap..pkg .fetch (BINIT,id), (MEGEINIT);

end if;
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oleo
it eq(init-.vanue~init-map-pkg fetch (lINIT .id))

then
bind(id, init-..ap-.pkg fetch (AINIT. id) ,MERGEINIT);

else
if eq(init-.aap..pkg.fetch(AINIT,id),

init..aap-pkg fetch (BINIT. id))
then
bind(id, init-uap-.pkg .fetch(AINIT, id) ,HERGEINIT);

else
bind(id, cant lict..expression ,MERGEINIT);

end if;
end if;

end if;
end if;

end loop;
for id: padl-id, t: type-.nano in type-.declaration..pkg. scan(A) loop

if not menber(id, BASE) and member(id, B)
then

base-.type : - null-.type;
b-type :- type..declaration..pkg.fetch(B. id);
bind(id. merge-typen(baue-type, t, b-.type), MERGE);
assign (init..value, init-..ap..pkg fetch (AINITi);
it eq(init-.value, init...ap..pkg fetch (BINIT, id))
then
bind(id. init.-value,MERGEINXT);

elseo
bind(id. conflict..expression,MERGEINIT);

end it;
end it;

end loop;
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for id: psdl~id, t: type-.name in type-.declaration-.pkg.scan(B) loop
if not meaber~id, BASE) and member(id, A)
then

base-~type :- null-.type;
a-.type :- type-.declaration-.pkg.fetch(A,id);
bind(id. uerge-.types(base-.type, a-.type, t), MERGE);
assign(init-.value, init-m.ap-.pkg.fetch(BINIT~id));
if eq(init-.value, init..uap-.pkg .fetch(AINIT, id))

then
bind(id. init..valueNMERGEINIT);

6136

bind(id, conflict..expression,JhERGEINIT);
end if;

end if;
end loop;

end merge..states;

function merge...et(BASE, A, B: sillisec) return aillisec is
A-.DIFF..BASE, B-.DIFF-.BASE, A-.INT..D: aillisec;
begin

if A <- B
then A-.INT..B :-B;
else A-.INT-B :A;

end if;
if BASE <- A

then A-.DIFF-.BASE :w- systeam. ax..int;
else A-.DIFF..BASE :A;

end if;
if BASE <- B

then B..DIFF-.BASE :*system-uax-.int;
else D..DIFF-.BASE :B;

end if;
if A-.DIFF..BASE <- A-INT..B

then if A..DIFF..BASE <- B-.DIFF-BASE
then return A..DIFF_.BASE;
else return B..DIFF..BASE;

end if;
else if A-.INT-.B <= B..DIFF-.BASE

then return A..INT..B;
else return B-.DIFF-.BASE;

end if;
end if;

end nerge~met;
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7tmmlle aergwid~at*(UUS, A, 3: iduewt) return id..set in

A..DIMB.ASED 3..DIFF..ASE, MUMG: id-set;

begin
assign(A-.DIFF..DASE. eupty..id-.set);
assign (B-.DIFF.BASE. empty..id-.set);
assign(MERGE, eapty-.id..set);
diffezence(A, BASE, A..DIFFBASE);
difterence(B, BASE, B-DIFF..BASE);
for id: psdl..id in id-s.et-.pkg. scan (A) loop

it senber~id, B)
then

a~dd~id. MERGE);
end if;

end loop;
for id: psdl..id in id..set..pkg. scan(A-.DIFF-.BASE) loop
if not member(id, MERGE)
then

add(id, MERGE);
end if;

end loop;
for id: psdl-.id in id-.set-.pkg.scan(B..DIFF.-BASE) loop
if not sember(id, MERGE)
then

add(id. MERGE);
end if;

end loop;
return MERGE;

end mergeidusets;
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function merge-tert(BASE, A, B: text) return text is

begin
if eq(BASE, empty-text) and eq(A, emptytext) and eq(B, empty-text)

then return eapty.text;
else if eq(BASE, A)

then if not eq(BASE, B)
then return B;
else return BASE;

end if;

else if eq(BASE, B)
then return A;
else if eq(A. B)

then return A;
else return to-a("*eText Conflict**");

end if;
end if;

end if;
end if;

end merge.text;

end proto_ spec-nerge-pkg;
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4. proto-impLmerge.pkg

------------------------------------------------------------
-- COMPONENT NAME : PACKAGE PROTO.IMPLERGE.PKG(proto-implnmerge.pkg-s.a)
-- USAGE : Used to perform change-merging on PSDL program
-- imp".ementat ions.
-- AUTHOR : David A. Dampier
-- DATE OF CREATION : 19 April 1994
-- LANGUAGE USED : Ada
-- COMPILER USED : Sun Ada 1.0
-- PURPOSE : Provides specifications for the functions necessary

to merge PSDL Implementations.

-- - - - - - - - - - - - - - - - - - - - - - - - - - - --------------ee e e e e e e e e e e e

with system;
with TEXToIO; use TEXTIO ;
with astrings; use a-strings;
with generic.map.pkg;

with generic.set.pkg;
with psdl-concrete.type.pkg; use psdl-concrete.type-pkg;
with psdl.component.pkg; use psdl-component.pkg;
with proto.spec.merge.pkg; use proto-specsmerge.pkg;
with ezpression.pkg; use expression.pkg;

package proto-implsmerge.pkg is

function mergestreams(BASE, A, B: typedeclaration)

return type-declaration;

function merge-timers(BASE, A, B: id.set) return id.set
renames proto-spec.merge-pkg .merge-id.sets;

function merge-trigger.naps(VERTS: idoset; BASE, A, B: trigger-map)

return triggermap;

function merge-execguard.maps (VERTS: id.set; BASE, A, B: exec.guard-map)

return exec.guardnmap;
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tIMC ftimwuer.outpUt..gUard-.mapx (BABE, A. B: out..guard-sap)
return out ..guard-uap-1r

function merge...zcep-.trigger-s.aps (BASE, A, B: *xcep-.trigger..uap)
return excep..trigger-m.ap;

function nerge..tiner-op-maps(VERTS: id-.set; BASE, A, B: tiuer-.op-..ap)
return timer-.op...uap;

function merge-.period(DASE, A, B: tiuing-m.ap) return timing-.map;

function merg...fv.or-art(BASE, A, B: timing-m.a~p) return tiuing...uap;

function uerge-m.in..call..per(BASE, A, B: timing-m.ap) return timing-m.ap;

function uerge-.iupleaeutation~description(BASE, A, B: text) return text
renames proto..apec-a.merg.pkg uerge..text;*

end proto...imlap.merg..pkg;
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Package body Proto-iZupl-Uerge..pkg is

function Uarge..types(t..base, t-a, t.-b type~naze) return type-ama in

begin
it equal(t..base * t-a)

then
it equal(t..baue, t..b)

then
return(t-base);

else
return(t..b);

end if;
*ISO
it equal(t-base, t..b)

then
return(t-a);

also
if equal(t-.a, t..b)

then
retuxn(t..a);

else
return null-.type;

and it;
end if;

end it;
end nerge~types;

function serge-.streans(BASE, A, B: type-.declaration)
return type..declarat ion is

MERGE: type..declarat ion;
base-type. a-.type, b..type : type~nme;

begin
assign (MERGE, empty..type..declaration);
for id: psdl._id, t: type..Alae in type..declaration..pkg. scan(BASE) loop

it uember(id, A) and ainber(id, B)
then

a-type :-type.Aeclaration..pkg.fetch(A,id);
b..type :-type..declaration..pkg .fetch(3~id);

bind(id, aerge~types(t, aýtype, b..type), MERGE);
end it;

and loop;
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ter id: p.41.14, t: type-nowa in typ...doclmzatioa..pkg. .cazi(A) loop
it not membe?(id, BASE) mand momber(id, B)

then
base-type :- nuilltypo;
b..typ. :a type..declaration..pkg.fetch(D, id);
bind(idaeorge..typea(base-.type, t,-b-.typ.), MERGE);

end it;
end loop;
for id: padl. t: type-,name in type-declaration..pkg.scan(B) loop

if not mesL.-,id, BASE) and neaber~id, A)
then

base-.type :a null-.type;
astype :- type..declaration-.pkg fetch(A~id);
bind(id,uerg...types(baae-.typc,a..type, t), MERGE);

end if;
end loop;
return MERGE;

and morgc...treams;

function merge-triggers(DASE, A. 'r: trigger) return trigger is

MERGE: trigger;
conflict-.trigger : trigger :- (tt =) by-all,

strewn -> i&..uet..pg. add (to-.a&'TOP"),

begin
if eq(DASE, A)

then
if *q(BASE, B)

then
MERGE.tt : BASE.tt;
assign(MERGE. stream.,

aerge-id-seta (DSE. stream., A. strean., B. streans));
return MERGE;

also
return B;

end if;
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it eq(3ASZ, B)
thea

return A;

it .q(BASE, B)
then

return A;

return conflict.triggor;
end it;

ad it;
ead it;

end merge-.riggers;

fuaction merge.trigger.-aps(VRTS: id-set; BASE, A, B: trigger-ap)
return trigger-sap is

EM: trigger-ap;
basetrig, a-trig, b.trig, aeogetrig : trigger;

begin
assign (OUE, empty.triggor-map) ;
for id : psdl-id in id.lswtpk.sgcan(VRTS) loop

basetrig :a fetch(BASE,id);
a.trig : fetch(A,id);
b.trig := fetch(Bid);

erge-.trig := merg..triggers(base-trig, a..trig, b.trig);
bind(id, 1erge-trig, HMUf);

end loop;
return MHU;

and mergo.trigger.naps;

function aergeexpressions (BASE, A, B :expression) return expression is

local-base : expression;
locala : expression;
local.b : expression;
conflict-expression : constant expression :

creato-identitier(to-.a("**CONFLICT**"));
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assigm(local..a. A);
assipn(local..b, 3);
it eq(local-.BASE, local-a)

then
if eq(local..DASE, localDB)

then
retumn(local-JADE) ;

else
return(local-B);

end if;
else

if eq(local-BASE, local-B)
then

return(local..A);
else

if eq(local-.A local-B)
then

return(local..A);
*lSO

return contlict-.express ion;
end if;

end if;
and if;

end merge-express ions;

function merge..ezec-.guard...ups(VERTS: id..set; BASE, A, B: exec-guard..uap)
return exec..guard..uap is

MMRE: ezec-guazt-map;
base~eg, a-eg beog, merge-eg : expression;

begin
assign(HDGE, empty..exec..guard-m.ap);
for id : psdl-.id in id-set..pkg.scan(VERTS) loop

assign(base~eg. fetch(DASE~id));
assipn(a..eg, fetch(A id));
assign(b..eg, tetch(B~id));
assign(morge..eg, merge-wezressions(base-.eg. a~eg, beog));
bind(id. nerge-eg. HMERE;

end loop;
return MERE;

end nerge..ezec..guard..maps;
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function merge-output..guard-sap. (BASE. A, B: out~gward..uap)
return out..gua~rd-..ap is

MEGE: out .guard-map : - empty-.out-.guard-s.ap;
base-og. a0g, b-og. aerge-og : expression;

begin
for Ad : output..id, e: expression in out-.guard..map..pkg.scan(BASE) loop

it uebrne(idA) and amembr(id,B)
then

assign(a..og, fatch(A,id));
.ssip(b..og, fatch(B,id));
assiga(serge-.og, serge-.expreuuions(e. a.og. b-.og));
bind(id, norge-og, MERGE);

end if;
end loop;
for id : output..id, e epression in out..guard..ap-.pkg.scan(A) loop

if not ame~br(id, MERGE)
then

if uembor(id, B)
then

assip(base..og, empty...zpreuuion);
ausign(b-.og, fetch(B id));
..uuip(morg...og, merge-.ezpresuions(baue..og, e, b..og));
bind(id, merge-og, MERGE);

else
if not aember(id, BASE)
then

bind(id, e, KMEGE);
end if;

end if;
and if;

end loop;
for id : output..id, e : expression in out-.guard..uap-.pkg.scazi(B) loop
if not member(id, MERGE) and not uember(id, BASE)
then

bind(id. o. MERGE);
and if;

end loop;
return MERGE;

end merge..output..guard-m.aps;
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~u~e uin..i..ptw1er.ae~(BAK *A. 3: excep..trigger..uap)
return .xcep..trigger-m.ap in

NOWE: excep..trigger-s.ap;
base-et, aet, beot, merge~et :expression;

begin
assign (MERGE, empty-.ezcep-.trigger..map);
for id: sleep.,id,e: expression in exeep-.trigger-.iap-.pkg. scan (BASE) loop

it sueber(id,A) and meaber(id,B)
then

assign(a..et, tetch,(A,id));

massign(merge..et. merge-expressions(e, a~et, b..et));
bind(id, merge-et, MERGE);

end it;
end loop;
for id:ezcep..id, e:expression in excep-.trigger..uap..pkg. scau(A) loop

if not menber(id, MERGE)
then

it sember(id, 3
then

ass ig(base..et, empty..express ion);
assuga(b-et, fetch(B,Wd);
assign(serge..et, merge..expressions(base..et, o, be*t));
bind(id. aerge~et, MERGE);

else
it not member(id. BASE)

then
bind(id, e. MERGE);

end if;
end if;

end if;
end loop;
for id:excep..id, e:expression in excep..trigger..uap..pkg. scan (B) loop

it not meaber(id. MEOE) and not aeaber(id, BASE)
then

bind(id, a, MERGE);
end it;

end loop;
return MERGE;

end serge-excep..trigger-saps;
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function aerg...timer..op..sets (BASE, A.B: tier..op-aset) return tiuer..op..set in

begin
for t..op : tiser-op in tlaer..op..set..pkg. ucan(BASE) loop

it usinber(t-op,A)
then
if uamber(t..opB)
then

add(t..op, HUGE);

end if;
end if;

end loop;
for t-op : tiser-op in timer..op-seat..pkg.scan(A) loop

it not aeaber(t-.op MERGE)

then
if seaber(t-op,3)
then

add(t-.op,NUG E);
end if;

end if;
end loop;
-for t,.op : timer-op in tixer-.op-s.ut..pkguxcma(3) loop

it not aember(t-.op,MERGE)
then
if n'uber(t~op,A)
then

add(t-op.HERQE);
end if;

end it;

end loop;
return MERGE;

end merge..timer.op..ueta;
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tm.abai ag..twcw.* .m (VUT3 i&..uet; BASE, A, 3: tiuer.op...ua)
return tiner..op...up is.-

mUe=: timor-op-map;
beaseset, sunet, beset, mergeuset :tiuer..op..set;

begin
assuig(NERGE, eupty..timer..op-m.ap);
for id : padl..id in id...et..pkg.scan(VERTS) loop

ausign(base~uet, fetch (BASEid));
auuign(a..uet. totch(A~id));
assign(b...et, fetch(B~id));
assipn(serge..uet. merge..tiner..op-etu(base..uet, &-s.et, b-set));
bind(id, uerge-set, HDMGE);

end loop;
return HUME;

end acrge..tiiner.op..uapu;

function inerpe.timing..data(BASE, A, B: millisec) return millisec in

begin
if BASE a A

then if BASE - B
then return BASE;
Slue return B;

cand if;
else it BASE a D

then return A;
elue if A a3

then return A;
else return mystem.uax,.int;

end if;
end if;

and if;
end marge..t iminlgata;
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function morge..period(BASE, A, 3: tiain&.ap) return tising-s.ap in

MEGE: t izimg..aap;
BASEVAL. AVAL, DVAL: aillisec :- 0;

begin
assignCKERGE, .ipty..timing-s.ap);
for id: padl-id, a: aillisec in timing..aap-.pkg.scan(BASE) loop

if seinber(id, A) and amber(idB)
then

AVAL := f~tch(A, id);

DVAL :a fetch(B, id);
bind(id, serge-.tiaing..data(a,AVAL.DVAL), MERGE);

end if;
end loop;
for id: padl-id, a: aillisec in tiaiug..aap..pkg.scan(A) loop
if not aeab~r(id, MERGE) and not seaber(idBASE)

then
if member(id, B)

then
IVAL :fetch(B, id);
if a Ia VAL then
bind(id, systea.maa.int, MERGE);

end if;
else

bind(id, a. MEIRGE);
end if;

end if;
end loop;
for id: psdl..id, a: aiflisec in timing..aap..pkg.scan(A) loop

if not sember(id, A) and not aember(id,DASE)
then

bind(id, a. MERGE);
end if;

end loop;
return MERGE;

end serge-period;
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fumtitte merg...t...w..rt(ISM. A. 3: tluiag..iap) return tinin..mep is

HMEG: timlag-map;
DASEVAL, AVAL. BVAL: jillisec :a 0;

begin
..ssign(MERGE, empty-.timing..uap);
for id: pudl..id, 8: jillisec in tiuing..uap..pkg. scan (BASE) loop

if seaber~id, A) and uember(idB)
then

AVAL :fetch(A, id);
BVAL :*fetch(B. id);
bind (id * merge-net (m *AVAL, IVAL) MERGE);

end if;
end loop;
for id: psdl..id, a: millisec in timing..uap..pkg.scauCA) loop

if not sember(id, M ERG E) and not neuber(id,DASE)
then

if ua.i,3
then

DYAL :a fetch(D, id);
if a /- BVAL then

bind~id, systeu.sasx-int, MERGE);
end if;

else
bind(id, a, MERGE);

and if;
end if;

end loop;
for id: pudl..id, a: millisec in timing-s.ap..pkg.scan(A) loop

if not menber(id, A) and not uamber(idBASE)
then

bind(id, a, MERGE);
end if;

end loop;
return, MERGE;

end nerge..fv.or-..rt;
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function noe-e.mcp(BASE, A. B: millisec) return miflisec is

A.DIFF.BASE, 3..DIF?...ASE, A-.INT-.B: aillisoc;

begin
it A >a B

then A..INT-B :m ;
else A-IIT..B :A;

end it;
it BUSE <- A

then A-DIFF.BASE :- A;
else A..DIFF..BASE :0 systen.uaz..int;

end it;
it BASE <= B

then 3..DIFF-.BASE :-B;
else B..DIFFT-BASE :-system. max.iat;

end it;
if A..DIFF.BAE >a AIUT_.B

then it A. DIFF..BASE >= B.-DIFF..DASE
then return A-.DIFFBASE;
else return 3..DIFF..BASE;

end if;
else if A-.INT..3 >= 3..DIFFB.ASE

then return AINT.3;
else return B..DIFF...BASE;

end it;
end if;

end aerge-mcp;
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t~wtou wpu3L-aIIp~rUUA . 3: tining-sap) return t iuing..map is

tNO=: tiaing..uap;
DASEVAL, AVAL, DVAL: millisec :* 0;

begin
assign(NERGE, empty..tiaing..uap);
for id: pudl..id, a: millisoc in timing..uap-.pkg scan(BASE) loop

if member~id, A) and a~mber(id,B)
then

AVAL :*fetch(A. id);
DVAL :*fetch(B. id);
bind(id, merge-..cp(m.AVALDVAL), MERGE);

end if;
end loop;
for id: psdl~id, a: millisec in tiaing..ap-.pkg. scan (A) loop

if not aueber(id, MERGE) and not member(idDBASE)
then

if member(id. B)
then

DYAL :*fetch(B, id);
if a I- VAL then

bind(id, systea.aax~int, MERGE);
end if;

*1ue
bind(id, a, MERGE);

end if;
end if;

end loop;
for id: pudl..id, a: aillisec in tiaing.aap..pkg.scan(A) loop

if not aeaber(id, A) and not meaber(idBASE)
then

bizad(id, a, MERGE);
end if;

end loop;
return MERGE;

end merge..ain..call-per;

end proto-iapl-merge..pkg;
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5. prototpe..dependency..graph..pkg

-- COMPONENT NAME : PACKAGE PROTOTYPE-.DEPNDENCY..GRAPH-PKG
-- ~~( prototype-.dependency..graph-.pkg.s . a )

-- USAGE : Used to perform change-merging on prototype
-- dependency graphs..

-- AUTHOR :David A. Dampier
-- DATE OF CREATION :19 April 1994
-- LANGUAGE USED :Ada
-- COMPILER USED :Sun Ada. 1.0
-- PURPOSE :Provides specifications for the functions necessary

-- to merge PSDL prototype dependency graphs.
----- --------------------------------------------

with TCT._IO; use TEXT_..I;
with a-strings; use a-.strings;
with generic-..ap..pkg;
with generic-.set-.pkg;
with padl..concrete..type..pkg; use psdl..concrete-.type..pkg;
with psdl..gruph..pkg; use psdl..graph..pkg;
with padl-.component,..pk; use psdl..couponent..pkg;

package prototype..dependency..graph..pkg is

procedure assign(z: in out edge-set; y: in edge-set) renames
edge..set-pkg. assign;

type prototype-.dependency-graph is new psdl..grapak;

function empty..PDG return prototype-.dependency...gaph;

function build..PDG(P: in psdl-couponent)

return prototype-dependency-graph;

function preserved-part (DameA ,: in prototype..dependency-.graph)

return prototype..depandency-graph;

function create..slice(G: in prototype..dependency..graph;E: in edge)

return prototype..dependency-.graph;

function create-sliceCO: in prototype-.dependency..graph;E: in edge-set)

return prototype-.dependency..graph;
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tumtion compar...ulices (Si .52: in prototyp...dopendancy-graph)
return booloan;.

function graph..union(G1 ,02: in prototype.dependency..graph)
return prototype-depandency..graph;

function graph-aerge (Gi, G2,G3 in prototypo-e.dpendency..graph)
return prototype-dependency-.graph;

funct ion aft oct .d-.part (G,B: in prototyp.Adependency-.graph)
return prototype..dependency-.graph;

function compare..graphs(G1 ,G2,S: in prototyp...dependency-.graph)
return boolean;

end prototyp...dependency-.graph..pkg;

193



acae body prototyp..dependency-VaPh..Pkg is

funct ion eipty..PDG return prototype-.dependency-.graph is

begin
return empty-.psdl-graph;

and;

-- This funct ion takes a PSDL component and creates from the
-- implementation graph, a prototype dependency graph.

-------------------------------------------------

function build..PDG(P: in psdl..coupoent)
return prototype-.dependency..graph in

0: prototyp...dependency-.graph;
0: padl..id;
VUTIS: idmset;
OUTEDGE: a..string;

begin
assign(G. empty_.PDG);
assign(G. prototype..dependency..graph(graph(P)));
assign(METS, vertices(G));
for id: padl-.id in id-s.et-pkg.scan(VERTS) loop

if equal(successors(id, 0), empty..id..set)
then

OUTEDGE :- copy(id&EX);
assign(G. add-o.dge(id, EXT, OUTEDGE, 0, 0));
if not has..vertez (EXT, G)

then
assign(G. add..vertez(EXT, G));

end if;
end if;

and loop;
return 0;

end build..PDG;
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-- This fuacties calculates the part of BaseAsad 3 which are identical.^

function preserved..part (Dame.A,3: in prototype..depezidency-.graph)
return prototype-dependency..graph is

PP, S1, S2, S3: prototype-.depand~ncy..graph;
E: edge;
D: edge-set;

begin
assip (PP, .apty..PDG);
assign(S1. empty..PDG);
assign(S2, empty..PDG);
assign(S3. .upty-.PDG);
assign(D. edge. (hue));
for E:edge in edge-set..pkg.scan(D) loop

assign(Si, create-slice(Base, E));
assign(S2, create-olice(A. E));
assign(S3, create..ulice(D, E));
if compare..slices(S1. S2) and then coupare..slices(Si, S3)

then
assign(PP, graph-.union(S1, PP));

end if;
recycle(S1);
recycle (52) ;
recycle (33) ;

end loop;
return PP;

end preserved-part;
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-- This function creates a graph which contains only the part of G which.-
-- affects the output values written to the edge E.
---- ----------------------------------------------------

function create-slice(G: in prototype..dependency.,graph;E: in edge)
return prototype-dependency-graph is

1, S2: prototyp...dependency-graph;
D: edge;
C: edgemset;

begin
assign(SI, eapty..PDG);
assign(S2, euptyPDG);
if has-*.dg*(E.x, E.y, G) then

assign(Sl, add-edge(E.x,E.y,E.streaa..naae,
S1, latency(E.x,E.y,E.streaa..naae,G)));

assignL(S1, add..vertez(E.z, S1, aazimu..ezecution-.tiae(E.x,G)));
if eq(E.y. EXT)

then
assign(S1, add..vertez(E.y. SI));

end if;
assign(C. edges(G));
while not coupare-slices(S1, S2) loop

assign(S2, SI);
for D:edge in edge..set-pkg.scazi(C) loop
if (hau..vertez(D.y, Si) and not eq(D.y. EXT))

then
assign(SI, add..edge(D.z,D.y,

D.stream.name,S1, latency(D.x,D.y,D.streaa-naae,G)));
amsign(S1, add..vertez(D.z, S1,

=auiaua.execution..tixe(D .xz))
end if;

end loop;
end loop;

end if;
return SI;

and create-slice;
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-~ -4 --- - - - --- - -- - -

This fucftie caculate. thes maion of the graphs 01 and 02.
- --- --- --- --- --- --- --- ---

function graph..union(01 .02: in prototyp...dependoncy..graph)
return prototype..dependency-.graph is

0: prototyp...dependency-pgaph;
V: pedl-.id;
V: id..set;
9: edge;
D: edge~set;

begin
assign(G, .upty-.PDG);
asuign(0.0l);
assign(V. vertices(02));
assisn(D. edges(02));
for V:psdl..id in id.,.et-.pkg.scan(V) loop
it not(haa..vertez(V. 0))

then
assign(G. aMc~vertez(V, G,.uxismuu.ezecution..tiine(V,G2)));

end if;
end loop;
tor E:edge in edge-s.et..pkg.scan(D) loop

if not (edge...et..pkg.uember(E,edges(G)))
then
assign(G. add-o.dg*(E.xE.y,

E.Streaom-Ae, G,latency(E.x,E.yE.streS3.nSnae,G2)));
end if;

end loop;
return 0;

end graph-union;
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-- This funct ion merges three graphs using the function graph-union.

function graph-serge (GI ,G2 ,G3: in prototype-.dependency..graph)
return prototype-.dependency-graph is

G: prototype..dependency-graph;

begin
assign(G. empty-.PDG);
assign(G, graph..unio-(G1, G2));
assiga(G, graph..union(G, G3));
return G;

end graph-merge;

------------------------------------------------------------------

-- This function calculates the part of G which is not contained in P.
------------ -------------- --------------------------------

function atfected..part (G,B: in prototype..dependency..graph)
return prototype-depandency-.graph is

A, SG, SB: prototype-.dependency-Vgaph;
E: edge;
D: edge~set;

begin
assigCA. empty-PDG);
assign(SG. empty-.PDG);
assign(SB, empty..PDG);
assign(D. edges(G));
for E:edge in edge..set..pkg.scan(D) loop

assipz(SG, create-slice(G, E));
assign(SB, create..slic@(D, E));
if not compare-.slices(SG, SB)
then
assign(A, add-*ftde(E.z,E.y,

E.stresamname, A, latency (E. z,E. y, E.streaa..name, G)));
assign(A. add-.vortez(E.z, A. maximum,-execation-time(E .x, G)));
assign(A. add-vortez(E.y. A. aazimum..ezecution..tiue(Ey, G)));

end if;
end loop;
return A;

end affected-.part;
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-- This function compares the graphs 01 and 02 with respect to the A

- slice S. It each of 01 and 02 are the same with respect to S, then
-- it returns TRUE.
--------------------------------------------------------------------

function conpare.graphs (G1 ,G2, S: in prototype-dependency_.graph)

return boolean is

E: edge~set;

T, V: prototype.dependency.graph;

begin
assign(T. eaptyPDG);
assign(V, eapty.PDG);
assign(E, edges(psdl_.graph(S)));
assign(T, create-slice(GI, E));

assign(V, createoslice(02, E));

return(conpareoslices(T. V));

end compare-graphs;

end prototype.dependency.graph.pkg;
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